• 제목/요약/키워드: Wireless technique

검색결과 1,402건 처리시간 0.019초

효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로 (Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms)

  • 허광희;이진옥;서상구;정유승;전준용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.23-32
    • /
    • 2020
  • 압축센싱 기술인 CAFB는 대상 구조물의 원시신호를 목적된 주파수 범위의 신호로 압축하여 획득하도록 개발되었다[27]. 이때 압축센싱을 위해 CAFB는 대상 구조물의 목적된 주파수 범위에 따라 다양한 기준신호로 최적화 될 수 있다. 또한, 최적화된 CAFB는 지진과 같은 돌발/위험상황에서도 대상 구조물의 유효한 구조응답을 효율적으로 압축할 수 있어야 한다. 본 논문에서는 상대적으로 유연한 구조물의 효율적인 구조 건전도 모니터링을 위하여 목적된 주파수 범위를 10Hz 미만으로 설정하고, 이를 위한 CAFB의 최적화 방법과 지진상황에서 CAFB의 지진응답성능을실험적으로 평가하였다. 이를 위해 본 논문에서는, 먼저 Kobe 지진파형을 이용하여 CAFB를 최적화하였고, 이를 자체 개발한 무선 IDAQ 시스템에 임베디드 하였다. 그리고, Kobe 지진파형을 이용하여 2경간 교량에 대한 지진응답실험을 수행하였다. 마지막으로 CAFB가 내장된 IDAQ 시스템을 이용하여 실시간으로 2경간 교량의 지진응답을 무선으로 획득하고, 획득된 압축신호는 원시신호와 상호 비교하였다. 실험의 결과로부터 압축신호는 원시신호와 대비하여 우수한 응답성능과 데이터 압축효과를 보였고, 또한 CAFB는 지진상황에서도 구조물의 유효한 구조응답을 효과적으로 압축센싱할 수 있었다. 최종적으로 본 논문에서는 목적된 주파수 범위(10Hz 미만)에 적합하도록 CAFB의 최적화 방법을 제시하였고, CAFB는 지진상황의 계측-모니터링을 위해 경제적이고 효율적인 데이터 압축센싱 기술임을 증명하였다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.