• Title/Summary/Keyword: Wireless signal

Search Result 1,969, Processing Time 0.024 seconds

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.

A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff (계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.121-127
    • /
    • 2010
  • In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.

Design and Implementation of Geographical Handoff System Using GPS Information (GPS정보를 이용한 위치기반 핸드오프 시스템의 설계 및 구현)

  • Han, Seung-Ho;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.33-43
    • /
    • 2010
  • Recently, users want to use real-time multimedia services, such as internet, VoIP, etc., using their IEEE 802.11 wireless lan mobile stations. In order to provide such services, a handoff among access points is essential to support the mobility of a node, in such an wide area. However, the legacy handoff methods of IEEE 802.11 technology are easy to lose connections. Also, the recognition of a disconnection and channel re-searching time make the major delay of the next AP to connect. In addition, because IEEE 802.11 decides the selection of an AP depending only on received signal strength, regardless of a node direction, position, etc., it cannot guarantee a stable bandwidth for communication. Therefore, in order to provide a real-time multimedia service, a node must reduce the disconnection time and needs an appropriate algorithm to support a sufficient communication bandwidth. In this paper, we suggest an algorithm which predicts a handoff point of a moving node by using GPS location information, and guarantees a high transmission bandwidth according to the signal strength and the distance. We implemented the suggested algorithm, and confirmed the superiority of our algorithm by reducing around 3.7ms of the layer-2 disconnection time, and guaranteed 24.8% of the communication bandwidth.

I/Q Imbalance Compensation Method for the Direct Conversion Receiver with Low Pass Filter Mismatch (저역 통과 필터 불일치를 포함한 직접 변환 수신기의 I/Q 불균형 보상 기법)

  • Yun, Seonhui;Ahn, Jaemin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.3-10
    • /
    • 2014
  • Direct conversion receiver(DCR) gets noticed for integration and cost reduction of wireless communication systems instead of the heterodyne receiver which uses complex filter. But DCR has several factors in performance degradation. One of them is I/Q imbalance phenomenon, that is amplitude and phase mismatch between real and imaginary part of receiver. Accordingly, researches are being carried to improve the I/Q imbalance problem. However, the tendency of the broaden bandwidth of communication systems, low pass filter(LPF) mismatch problem affects severely in I/Q mismatch phenomenon at the DCR. To study this problem, we generated 10MHz broadband signal and shifted it ${\pm}8MHz$ from the center frequency. The signal is affected by LPF mismatch and it appears as frequency selective distortion. Thus, LPF mismatch model is added to I/Q imbalance model which conventionally dealt with amplitude and phase mismatches. In addition, we proposed the compensation method for each factors of mismatch. As the simulation results, the proposed I/Q mismatch compensator resolves the frequency selective distortion which occurred by the existing LPF mismatch.

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

A Study on the Efficient Interference Cancellation for Multi-hop Relay Systems (다중 홉 중계 시스템에서 효과적인 간섭 제거에 관한 연구)

  • Kim, Eun-Cheol;Cha, Jae-Sang;Kim, Seong-Kweon;Lee, Jong-Joo;Kim, Jin-Young;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2009
  • The transmitted signal from a source is transmitted to a destination through wireless channels. But if the mobile destination is out of the coverage of the source or exists in the shady side of the coverage, the destination can not receiver the signal from the source and they can not maintain communication. In order to overcome these problems, we adopt relays. A system employing relays is a multi-hop relay system. In the multi-hop relay system, coverages of each relay that is used for different systems can overlap each other in some place. When there is a destination in this place, interference occurs at the destination. In this paper, we study on the efficient co-channel interference (CCI) cancellation algorithm. In the proposed strategy, CCI is mitigated by zero forcing (ZF) or minimum mean square error (MMSE) receivers. Moreover, successive interference cancellation (SIC) with optimal ordering algorithm is applied for rejecting CCI efficiently. And we analyzed and simulated the proposed system performance in Rayleigh fading channel. In order to justify the benefit of the proposed strategy, the overall system performance is illustrated in terms of bit error probability.

  • PDF

Design and Implementation of Adaptive Beam-forming System for Wi-Fi Systems (무선랜 시스템을 위한 적응형 빔포밍 시스템의 설계 및 구현)

  • Oh, Joohyeon;Gwag, Gyounghun;Oh, Youngseok;Cho, Sungmin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2109-2116
    • /
    • 2014
  • This paper presents the implementation and design of the advanced WI-FI systems with beam-forming antenna that radiate their power to the direction of user equipment to improve the overall throughput, contrast to the general WI-FI systems equipped with omni-antenna. The system consists of patch array antenna, DSP, FPGA, and Qualcomm's commercial chip. The beam-forming system on the FPGA utilizes the packet information from Qualcomm's commercial chip to control the phase shifters and attenuators of the patch array antenna. The PCI express interface has been used to maximize the communication speed between DSP and FPGA. The directions of arrival of users are managed using the database, and each user is distinguished by the MAC address given from the packet information. When the system wants to transmit a packet to one user, it forms beams to the direction of arrival of the corresponding user stored in the database to maximize the throughput. Directions of arrival of users are estimated using the received preamble in the packet to make its SINR as high as possible. The proposed beam-forming system was implemented using an FPGA and Qualcommm's commercial chip together. The implemented system showed considerable throughput improvement over the existing general AP system with omni-directional antenna in the multi-user communication environment.

HRV Evaluation under Stress Condition by Using Patch Type Bipolar Heart Activity Monitoring System (패치형 바이폴라 심장활동 모니터링 시스템을 이용한 스트레스 상태의 HRV 평가)

  • Yang, Heui-Kyung;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Lee, Kang-Hwi;Choi, Hee-Jung
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, we have developed the patch type HAMS (Heart Activity Monitoring System) which is non-restricted, non-awarable and non-invasive. The module using wireless telecommunication to receive the ECG (electrocardiogram) signal at the computer has mobility which it easily monitors the heart activity of subjects in no time for long term at any time and places. We developed the small patch type electrode which can be attached on the chest. Also the reliability and moving artifact of ECG signal measured by this electrode have been verified. Using HAMS, we measured the HRV (Heart Rate Variability) parameters, the questionnaire evaluation for anxiety and stress and the amount of stress hormone (cotisol) to evaluate the stress effect in HRV on the same subject. As a result of comparing the values under non stressed and stressed condition, there was significant difference on many parameters. And the parameter highly related with stress on Pearson's Correlation Coefficient has been examined. These show that using HAMS is able to evaluate the function of autonomic nervous system. Therefore, we can predict heart problem in daily life by using HAMS. Also we expect that this module can be applied for more application as health monitoring system.

  • PDF

Adaptive scheduling scheme considering users' interference environment in TDD uplink cellular networks (시분할 이중화 상향 링크 셀룰러 네트워크에서 사용자의 간섭 환경을 고려한 적응적 스케쥴링 기법)

  • Cho, Moon-Je;Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1480-1485
    • /
    • 2017
  • A conventional max SNR scheme, which allocates uplink resources to the user with the highest gain of desired signal channel with a serving base station (BS), exhibits excellent performance in low interference environments. On the other hand, max SGIR scheme, which allocates resources by considering both the desired signal chanel gain and users' interference generating to neighboring BSs, outperforms the max SNR in high interference environments. The conventional two scheduling schemes exhibit optimal performance in different interference environments. Thus, we propose an adaptive scheduling scheme in order to overcome disadvantages of the conventional schemes. In the proposed scheme, a user is selected by max SNR and then the user's generating interference is compared with a pre-determined threshold value. If the generating interference is larger than a pre-determined threshold, then a user is re-selected by max SGIR policy. Monte-Carlo simulation results reveals that the proposed scheme outperforms the conventional schemes in various interference environments.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.