• Title/Summary/Keyword: Wireless sensors networks

Search Result 427, Processing Time 0.035 seconds

On Relocation of Hopping Sensors for High Reliability Wireless Sensor Networks (고신뢰도 무선센서네트워크를 위한 홉핑 센서 재배치에 대한 연구)

  • Kim, Moon-Seong;Park, Kwang-Jin
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.47-53
    • /
    • 2011
  • When some sensors under Wireless Sensor Networks fail or become energy-exhausted, redundant mobile sensors might be moved to recover the sensing holes. Within rugged terrain where wheeled sensors are unsuitable, other type of mobile sensors, such as hopping sensors, are needed. In this paper, we address the problem of relocating hopping sensors to the detected sensing holes. Recent study for this work considered the relocation using the shortest path between clusters; however, the shortest path might be used repeatedly and create other sensing holes. In order to overcome the mentioned problem, we propose relocation schemes using the most disjointed paths or multi-paths. Simulation results show that the proposed schemes guarantee more balanced migration distributions of efficient sensors and higher movement success ratios of required sensors than those of the shortest path-based scheme.

A Design of Environment monitoring Server Based Wireless Mesh Networks (Wireless Mesh Networks 기반 환경감시서버 설계)

  • Im, Hyeok-Jin;Ju, Hui-Dong;Lee, Meong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.671-674
    • /
    • 2007
  • USN (Ubuquitous Sensor Network) identifies that networks are able to gather information from various kinds of sensors with RF. In the USN, it is important that sensor nodes deliver stable data by overcoming limited transmission distance and by setting optimum routes. In this paper, we propose a method to overcome the limited distance of sensor nodes using Wireless Mesh Networks. With this method, environmental monitoring system for u-farm support stable data transmission by applying MAP of Wireless Mesh Networks.

  • PDF

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

A Relative Location based Clustering Algorithm for Wireless Sensor Networks (센서의 상대적 위치정보를 이용한 무선 센서 네트워크에서의 클러스터링 알고리즘)

  • Jung, Woo-Hyun;Chang, Hyeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.212-221
    • /
    • 2009
  • This paper proposes a novel centralized clustering algorithm, "RLCA : Relative Location based Clustering Algorithm for Wireless Sensor Networks," for constructing geographically well-distributed clusters in general WSNs. RLCA does not use GPS and controls selection-rate of cluster-head based on distances between sensors and BS. We empirically show that RLCA's energy efficiency is higher than LEACH's.

A Gateway Protocol Architecture for Zigbee Based Wireless Sensor Network Interconnecting TCP/IP Networks

  • Qiu, Peng;Heo, Ung;Choi, Jae-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2009
  • This paper investigates protocol architecture for a web-sensor gateway interconnecting internet and wireless sensor network, in which Zigbee sensors are connected over the IEEE802.15.4 communication protocol standard. The web-sensor gateway is to deliver data between TCP/IP and Zigbee/IEEE802.15.4 protocols, transparently. Since the gateway provides a means to remotely control and aggregate sensor data over the internet, it needs to be designed in the view point of users and in their convenience. In accordance, the common gateway interface technology satisfying users on the web browser to efficiently manage and query the sensors in the wireless sensor networks, ubiquitously, is also introduced. Finally, a simulation prototype for the web-sensor gateway is proposed and verified using OPNET simulation tool.

  • PDF

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

An Intelligent Clustering Mechanism by Fuzzy Logic Inference

  • Pascalia Handayani;Young-Taek Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.1039-1042
    • /
    • 2008
  • Wireless sensor networks enable pervasive, ubiquitous, and seamless communication with the physical world. In this paper, we are concerned for clustering sensors into groups, so that sensors communicate information only to cluster heads and then the cluster heads communicate the aggregated information to the sink node, that the network can save energy. In this paper, we propose the algorithm for electing the cluster head and fuzzy registration of cluster head in a dynamic cluster wireless sensor networks. For making decision for clustering we will use fuzzy logic system. In simulation, we could achieve power regulation of total consumption and also the stabilization of the networks energy efficiency.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring

  • Grosse, Christian U.;Glaser, Steven D.;Kruger, Markus
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.197-209
    • /
    • 2010
  • The structural state of a bridge is currently examined by visual inspection or by wired sensor techniques, which are relatively expensive, vulnerable to inclement conditions, and time consuming to undertake. In contrast, wireless sensor networks are easy to deploy and flexible in application so that the network can adjust to the individual structure. Different sensing techniques have been used with such networks, but the acoustic emission technique has rarely been utilized. With the use of acoustic emission (AE) techniques it is possible to detect internal structural damage, from cracks propagating during the routine use of a structure, e.g. breakage of prestressing wires. To date, AE data analysis techniques are not appropriate for the requirements of a wireless network due to the very exact time synchronization needed between multiple sensors, and power consumption issues. To unleash the power of the acoustic emission technique on large, extended structures, recording and local analysis techniques need better algorithms to handle and reduce the immense amount of data generated. Preliminary results from utilizing a new concept called Acoustic Emission Array Processing to locally reduce data to information are presented. Results show that the azimuthal location of a seismic source can be successfully identified, using an array of six to eight poor-quality AE sensors arranged in a circular array approximately 200 mm in diameter. AE beamforming only requires very fine time synchronization of the sensors within a single array, relative timing between sensors of $1{\mu}s$ can easily be performed by a single Mote servicing the array. The method concentrates the essence of six to eight extended waveforms into a single value to be sent through the wireless network, resulting in power savings by avoiding extended radio transmission.