• Title/Summary/Keyword: Wireless sensors networks

Search Result 427, Processing Time 0.024 seconds

Study of Local Area Weather Condition Monitoring System in WSN (WSN기반의 국지적 기상모니터링 시스템 고찰)

  • Chung, Wan-Young;Jung, Sang-Joong;Kim, Jong-Jin;Kwon, Tae-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.271-276
    • /
    • 2009
  • An local area weather condition monitoring system to minimize many disasters from the sudden change of weather condition in local and mountain area is proposed. Firstly, the comparison of present state of the related monitoring systems and the possibility of realization with some merits are investigated. Moreover, this paper present direction of local area weather condition monitoring system based on integration of wireless sensor network and CDMA network following some case study. Through the efficient integration of both networks, the measured weather condition data from sensors can be transmitted to the server or mobile to monitor with high reliability. The proposed monitoring system will guide new type of project in wireless sensor network and support alarm service of the sudden change of weather condition to mobile user from central official regulations.

  • PDF

A study on traffic signal control at signalized intersections in VANETs (VANETs 환경에서 단일 교차로의 교통신호 제어방법에 관한 연구)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.108-117
    • /
    • 2011
  • Seoul metropolitan government has been operating traffic signal control system with the name of COSMOS since 2001. COSMOS uses the degrees of saturation and congestion which are calculated by installing loop detectors. At present, inductive loop detector is generally used for detecting vehicles but it is inconvenient and costly for maintenance since it is buried on the road. In addition, the estimated queue length might be influenced in case of error occurred in measuring speed, because it only uses the speed of vehicles passing by the detector. A traffic signal control algorithm which enables smooth traffic flow at intersection is proposed. The proposed algorithm assigns vehicles to the group of each lane and calculates traffic volume and congestion degree using traffic information of each group using VANETs(Vehicular Ad-hoc Networks) inter-vehicle communication. It does not demand additional devices installation such as cameras, sensors or image processing units. In this paper, the algorithm we suggest is verified for AJWT(Average Junction Waiting Time) and TQL(Total Queue Length) under single intersection model based on GLD(Green Light District) Simulator. And the result is better than Random control method and Best first control method. In case real-time control method with VANETs is generalized, this research that suggests the technology of traffic control in signalized intersections using wireless communication will be highly useful.

Development of a Real-Time Position Tracking System for a Manufacturing Process Based on a UWB Sensor Using a Kalman Filter (칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발)

  • Jeong, Seung-Hyun;Choi, Deuk-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.627-633
    • /
    • 2020
  • Assembly process data can be gathered in real time in a manufacturing execution system (MES) server using proximity sensors, barcodes, RFID, ZigBee, Bluetooth, wireless sensor networks, etc. Although this is suitable for identifying process flow and checking production progress, it is difficult to trace the location of individual workers in real time for missing work or trajectories within the work area. To overcome this, the location and trajectory of the working tool can be analyzed in real time through a position tracking system of an operator's working tool. It can instruct the operator to perform a consistent working process. Productivity and quality improvement can be achieved by an alarming or blocking operator with possible assembly defects during the assembly process in real time. To this end, we developed a real-time tool position-tracking sensor system based on Ultra Wide Band (UWB) trilateration using a Kalman filter to eliminate mechanical vibration and radio communication noise.

Development of a Spatial DSMS for Efficient Real-Time Processing of Spatial Sensor Data (공간 센서 데이타의 효율적인 실시간 처리를 위한공간 DSMS의 개발)

  • Kang, Hong-Koo;Park, Chi-Min;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • Recently, the development of sensor devices has accelerated researches on advanced technologies like Wireless Sensor Networks. Moreover, spatial sensors using GPS lead to the era of the Ubiquitous Computing Environment which generally uses spatial information and non-spatial information together. In this new era, a real-time processing system for spatial sensor data is essential. In this reason, new data processing systems called DSMS(Data Stream Management System) are being developed by many researchers. However, since most of them do not support geometry types and spatial functions to process spatial sensor data, they are not suitable for the Ubiquitous Computing Environment. For these reasons, in this paper, we designed and implemented a spatial DSMS by extending STREAM which stands for STanford stREam datA Manager, to solve these problems. We added geometry types and spatial functions to STREAM in order to process spatial sensor data efficiently. In addition, we implemented a Spatial Object Manager to manage shared spatial objects within the system. Especially, we implemented the Simple Features Specification for SQL of OGC for interoperability and applied algorithms in GEOS to our system.

  • PDF

A Secure and Lightweight Authentication Scheme for Ambient Assisted Living Systems (전천 후 생활보조 시스템을 위한 안전하고 경량화 된 인증기법)

  • Yi, Myung-Kyu;Choi, Hyunchul;Whangbo, Taeg-Keun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2019
  • With the increase in population, the number of such senior citizens is increasing day by day. These senior citizens have a variety of care needs, but there are not enough health workers to look after them. Ambient Assisted Living (AAL) aims at ensuring the safety and health quality of the older adults and extending the number of years the senior citizens can live independently in an environment of their own preference. AAL provides a system comprising of smart devices, medical sensors, wireless networks, computer and software applications for healthcare monitoring. AAL can be used for various purposes like preventing, curing, and improving wellness and health conditions of older adults. While information security and privacy are critical to providing assurance that users of AAL systems are protected, few studies take into account this feature. In this paper, we propose a secure and lightweight authentication scheme for the AAL systems. The proposed authentication scheme not only supports several important security requirements needed by the AAL systems, but can also withstand various types of attacks. Also, the security analysis results are presented to show the proposed authentication scheme is more secure and efficient rather than existing authentication schemes.

A Guidance Methodology Using Ubiquitous Sensor Network Information in Large-Sized Underground Facilities in Fire (대형 지하시설물에서 화재발생 시 USN정보를 이용한 피난 유도 방안)

  • Seo, Yonghee;Lee, Changju;Jung, Jumlae;Shin, Seongil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.459-467
    • /
    • 2008
  • Because of the insufficiency of ground space, the utilization of underground is getting more and more in these days. Moreover, underground space is being used not only buildings but multipurpose space for movement, storage and shopping. However, ground space has vital weakness for fire compared to ground space. Especially in case of underground shopping center, there are various stuffs to burn and poisonous gas can be exposed on this count when the space is burned. A large number of casualties can be also occurred from conflagration as underground space has closed structures that prevent rapid evacuation and access. Therefore, this research proposes the guidance methodology for evacuation from conflagration in large-sized underground facilities. In addition, suggested methodology uses high technology wireless sensor information from up-to-date ubiquitous sensor networks. Fire information collected by sensors is integrated with existing underground facilities information and this is sent to guidance systems by inducing process. In the end, this information is used for minimum time paths finding algorithm considering the passageway capacity and distance. Also, usefulness and inadequacies of proposed methodology is verified by a case study.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.