• Title/Summary/Keyword: Wireless sensors networks

Search Result 427, Processing Time 0.031 seconds

Sensor Location Estimation in of Landscape Plants Cultivating System (LPCS) Based on Wireless Sensor Networks with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2020
  • In order to maximize the production of landscape plants in optimal condition while coexisting with the environment in terms of precision agriculture, quick and accurate information gathering of the internal environmental elements of the growing container is necessary. This may depend on the accuracy of the positioning of numerous sensors connected to landscape plants cultivating system (LPCS) in containers. Thus, this paper presents a method for estimating the location of the sensors related to cultivation environment connected to LPCS by measuring the received signal strength (RSS) or time of arrival TOA received between oneself and adjacent sensors. The Small sensors connected to the LPCS of container are known for their locations, but the remaining locations must be estimated. For this in the paper, Rao-Cramer limits and maximum likelihood estimators are derived from Gaussian models and lognormal models for TOA and RSS measurements, respectively. As a result, this study suggests that both RSS and TOA range measurements can produce estimates of the exact locations of the cultivation environment sensors within the wireless sensor network related to the LPCS.

System Architecture of Atopic Dermatitis Adjuvant for Children Using Wireless Sensor

  • Balitana, Maricel O.;Kim, Seok-Soo
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Pre schools with state of the art facilities that would provide not just academic excellence but also ensure the safety and provide efficient healthcare to their pupils relative to Atopic Dermatitis with Asthma is the main objective of this research One of the most promising applications of sensor networks is for human healthcare monitoring. Due to recent technological advances in sensor, low power microelectronics and miniaturization, and wireless networking enable the design and proliferation of this wireless sensor networks capable of autonomously monitoring and controlling environments. Thus, this research presents the utilization of such microelectronic sensor and plots the hardware and software architecture of a wireless sensor network system with real-time pupil monitoring that integrates vital sign sensors, location sensor and allergen sensor. This proposed architecture for wearable sensors can be used as active tags which can track pupil's location within the school's premises, identify possible atopic dermatitis with asthma allergens, it would monitor and generate a health status report of the pupil.

Self-Organized Hierarchy Tree Protocol for Energy-Efficiency in Wireless Sensor Networks

  • THALJAOUI, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.230-238
    • /
    • 2021
  • A sensor network is made up of many sensors deployed in different areas to be monitored. They communicate with each other through a wireless medium. The routing of collected data in the wireless network consumes most of the energy of the network. In the literature, several routing approaches have been proposed to conserve the energy at the sensor level and overcome the challenges inherent in its limitations. In this paper, we propose a new low-energy routing protocol for power grids sensors based on an unsupervised clustering approach. Our protocol equitably harnesses the energy of the selected cluster-head nodes and conserves the energy dissipated when routing the captured data at the Base Station (BS). The simulation results show that our protocol reduces the energy dissipation and prolongs the network lifetime.

Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.3 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Precision agriculture relies on information technology, whose precondition is providing real-time and accurate information. It depends on various kinds of advanced sensors, such as environmental temperature and humidity, wind speed, light intensity, and other types of sensors. Currently, it is a hot topic how to collect accurate information, the main raw data for agricultural experts, monitored by these sensors timely. Most existing work in WSNs addresses their fundamental challenges, including power supply, limited memory, processing power and communication bandwidth and focuses entirely on their operating system and networking protocol design and implementation. However, it is not easy to find the self-localization capability of wireless sensor networks. Because of constraints on the cost and size of sensors, energy consumption, implementation environment and the deployment of sensors, most sensors do not know their locations. This paper provides maximum likelihood estimators for sensor location estimation when observations are time-of arrival (TOA) range measurement.

MSCT: AN EFFICIENT DATA COLLECTION HEURISTIC FOR WIRELESS SENSOR NETWORKS WITH LIMITED SENSOR MEMORY CAPACITY

  • Karakaya, Murat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3396-3411
    • /
    • 2015
  • Sensors used in Wireless Sensor Networks (WSN) have mostly limited capacity which affects the performance of their applications. One of the data-gathering methods is to use mobile sinks to visit these sensors so that they can save their limited battery energies from forwarding data packages to static sinks. The main disadvantage of employing mobile sinks is the delay of data collection due to relative low speed of mobile sinks. Since sensors have very limited memory capacities, whenever a mobile sink is too late to visit a sensor, that sensor's memory would be full, which is called a 'memory overflow', and thus, needs to be purged, which causes loss of collected data. In this work, a method is proposed to generate mobile sink tours, such that the number of overflows and the amount of lost data are minimized. Moreover, the proposed method does not need either the sensor locations or sensor memory status in advance. Hence, the overhead stemmed from the information exchange of these requirements are avoided. The proposed method is compared with a previously published heuristic. The simulation experiment results show the success of the proposed method over the rival heuristic with respect to the considered metrics under various parameters.

Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks (음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선)

  • Kim, Youngsoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

A Development of Smart Monitoring Technique for Photovoltaic Power Systems (태양광 발전 시스템의 스마트 모니터링 기술개발)

  • Cho, Hyun Cheol;Sim, Kwang Yeal
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.50-56
    • /
    • 2015
  • This paper presents a smart monitoring technique for photovoltaic power systems by using wire and wireless communication networks in which the RS-232/484 and the Zigbee communication networks are inherently established respectively. In the proposed monitoring systems, environmental data sequences and the output power measured by sensors in photovoltaic systems are transferred to PC systems via two communication networks. We made electronic hardware boards for sensors and communication networks to construct its real-time monitoring system and carry out experiments for demonstrating reliability of the proposed monitoring system.

TLF: Two-level Filter for Querying Extreme Values in Sensor Networks

  • Meng, Min;Yang, Jie;Niu, Yu;Lee, Young-Koo;Jeong, Byeong-Soo;Lee, Sung-Young
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.870-872
    • /
    • 2007
  • Sensor networks have been widely applied for data collection. Due to the energy limitation of the sensor nodes and the most energy consuming data transmission, we should allocate as much work as possible to the sensors, such as data compression and aggregation, to reduce data transmission and save energy. Querying extreme values is a general query type in wireless sensor networks. In this paper, we propose a novel querying method called Two-Level Filter (TLF) for querying extreme values in wireless sensor networks. We first divide the whole sensor network into domains using the Distributed Data Aggregation Model (DDAM). The sensor nodes report their data to the cluster heads using push method. The advantages of two-level filter lie in two aspects. When querying extreme values, the number of pull operations has the lower boundary. And the query results are less affected by the topology changes of the wireless sensor network. Through this method, the sensors preprocess the data to share the burden of the base station and it combines push and pull to be more energy efficient.

A Proposal Mac Protocol for Integration of Hybrid Wireless Sensor Networks

  • Christine, Niyizamwiyitira;Jeong, Seung-heui;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • WSNs is evolving different kinds of networks depending on different circumstances, among those we have HWSNs (Hybrid Wireless Sensor Networks) which invokes sensor nodes mobility. In hybrid wireless sensor networks (HWSNs), reducing energy consumption of resource constrained and adaptability to the sensors nodes motion are the crucial problems; to overcome this we need a scalable MAC protocol. Many MAC protocols have been proposed by different researchers, but in this paper we propose LMAC because it outperforms S-MAC, T-MAC and D-MAC protocols comparing to its improvement of energy efficiency and mobile adaptability.

  • PDF

Geometry-Based Sensor Selection for Large Wireless Sensor Networks

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • We consider the sensor selection problem in large sensor networks where the goal is to find the best set of sensors that maximizes application objectives. Since sensor selection typically involves a large number of sensors, a low complexity should be maintained for practical applications. We propose a geometry-based sensor selection algorithm that utilizes only the information of sensor locations. In particular, by observing that sensors clustered together tend to have redundant information, we theorize that the redundancy is inversely proportional to the distance between sensors and seek to minimize this redundancy by searching for a set of sensors with the maximum average distance. To further reduce the computational complexity, we perform an iterative sequential search without losing optimality. We apply the proposed algorithm to an acoustic sensor network for source localization, and demonstrate using simulations that the proposed algorithm yields significant improvements in the localization performance with respect to the randomly generated sets of sensors.