• Title/Summary/Keyword: Wireless sensors networks

Search Result 427, Processing Time 0.027 seconds

Design and Application of a LonRF Device based Sensor Network for an Ubiquitous Home Network (유비쿼터스 홈네트워크를 위한 LonRF 디바이스 기반의 센서 네트워크 설계 및 응용)

  • Ro Kwang-Hyun;Lee Byung-Bog;Park Ae-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.3
    • /
    • pp.87-94
    • /
    • 2006
  • For realizing an ubiquitous home network(uHome-net), various sensors should be able to be connected to an integrated wire/wireless sensor network. This paper describes an application case of applying LonWorks technology being widely used in control network to wire/wireless sensor network in uHome-net and the design and application of LonRF device that consists of a neuron chip including LonTalk protocol, a 433.92MHz RF transceiver, a sensor, and application programs. As an application example of the LonRF device, the LonRF smart badge that can measure the 3D location of objects in indoor environment and interwork with the uHome-net was developed. LonRF device based home network services were realized on the uHome-net testbed such as indoor positioning service, remote surveillance service and remote metering service were realized. This research shows that LonWorks technology based sensor network could be applicable to the control network in an ubiquitous home network and the LonRF device can be used as a wireless node in various sensor networks.

  • PDF

A Study on Local Area Weather Condition Monitoring System in WSN and CDMA (무선센서네트워크와 CDMA망을 이용한 국지적 기상모니터링 시스템)

  • Chung, Wan-Young;Jung, Sang-Joong;Kim, Jong-Jin;Kwon, Tae-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1713-1720
    • /
    • 2009
  • An local area weather condition monitoring system to minimize many disasters from the sudden change of weather condition in local and mountain ales is proposed. Firstly, the comparison of present state of the related monitoring systems and the possibility of realization with some merits are investigated. Moreover, this paper present direction of local area weather condition monitoring system based on integration of wireless sensor network and CDMA network following some case study. The sensor node for wireless sensor network and an interface dongle are fabricated for the system. The stand-alone software in cellular phone is also developed. Through the efficient integration of both networks, the measured weather condition data from sensors can be transmitted to the server or mobile to monitor with high reliability. The proposed monitoring system will guide new type of project in wireless sensor network and support alarm service of the sudden change of weather condition to mobile user from central official regulations.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Energy-efficient query processing based on partial attribute values in wireless sensor networks (무선 센서 네트워크에서 부분 속성값을 활용한 에너지 효율적인 질의처리)

  • Kim, Sung-Suk;Kim, Hyong-Soon;Yang, Sun-Ok
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.137-145
    • /
    • 2010
  • Wireless sensors play important roles in various areas as ubiquitous computing is generalized. Depending on applications properties, each sensor can be equipped with limited computing power in addition to general function of gathering environment-related information. One of main issues in this environment is to improve energy-efficiency in sensor nodes. In this paper, we devise a new attribute-query processing algorithm. Each sensor has to maintain partial information locally about attributes values gathered at its all descendent nodes. As the volume is higher, however, the maintenance cost also increases. And the update cost also has to be considered in the proposed algorithm. Thus, some bits, AVB(Attribute-Value Bits), are delivered instead of the value itself, where each bit represents a bound of attribute. Thus, the partial information can decrease the number of exchanged messages with a little cost during query processing. Through simulation works, the proposed algorithm is analyzed from several points of view.

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

Energy Efficient Routing Protocol in Wireless Sensor Networks with Hole (홀이 있는 WSN 환경에서 에너지 효율적인 라우팅 프로토콜 )

  • Eung-Bum Kim;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2023
  • Energy-efficient routing protocol is an important task in a wireless sensor network that is used for monitoring and control by wirelessly collecting information obtained from sensor nodes deployed in various environments. Various routing techniques have been studied for this, but it is also necessary to consider WSN environments with specific situations and conditions. In particular, due to topographical characteristics or specific obstacles, a hole where sensor nodes are not deployed may exist in most WSN environments, which may result in inefficient routing or routing failures. In this case, the geographical routing-based hall bypass routing method using GPS functions will form the most efficient path, but sensors with GPS functions have the disadvantage of being expensive and consuming energy. Therefore, we would like to find the boundary node of the hole in a WSN environment with holes through minimal sensor function and propose hole bypass routing through boundary line formation.

Reliable Multicasting with Implicit ACK and Indirect Recovery in Wireless Sensor Networks (묵시적 응답 및 간접 복구를 이용한 무선 센서 네트워크에서의 신뢰성 있는 멀티캐스팅)

  • Kim, Sung-Hoon;Yang, Hyun;Park, Chang-Yun
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 2008
  • As sensor networks are used in various and dynamic applications, the function of sink-to-sensors reliable multicasting such as for task reprogramming is newly required. NAK-based error recovery schemes have been proposed for energy efficient reliable multicasting. However, these schemes have incompleteness problems such as the last packet loss. This paper introduces an ACK-based error recovery scheme, RM2I(Reliable Multicast with Implicit ACK and Indirect Recovery). It utilizes wireless multicast advantage in which a packet may be delivered to all of its omni-directional neighbor nodes. When a sender overhears a packet which its receiver forwards to the next nodes, it may interpret it as an ACK from the receiver. We call it an Implicit ACK. In Indirect Recovery, when a node receives a packet from neighbor nodes which are not its direct upstream node, it saves and utilizes it for error recovery. Using NS-2 simulator, we have analyzed their effects. We have also compared RM2I with the NAK-based error recovery scheme. In results, RM2I shows comparable performances to the ideal NAK-based scheme, except where Implicit ACK and Indirect Recovery do not occur at the edges of the networks.

Study on the OMAC-SNEP for Unattended Security System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 무인 경비 시스템에서의 OMAC-SNEP 기술에 관한 연구)

  • Lee Seong-Jae;Kim Hak-Beom;Youm Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Ubiquitous Sensor Network consists of a number of sensor nodes with a limited computation power and limited communication capabilities, and a sensor node is able to communicate with each other at anytime and in any place. Due to the rapid research and development in sensor networks, it will rapidly grow into environments where hmm beings can interact in an intuitive way with sensing objects which can be PDAs, sensors, or even clothes in the future. We are aiming at realizing an Unattended Secure Security System to apply it to Ubiquitous Sensor Network. In this paper, the vulnerabilities in the Unattended security system are identified, and a new protocol called OMAC-SNEP is proposed for the Unattended Secure Security System. Because the CBC-MAC in SNEP is not secure unless the message length is fixed, the CBC-MAC in SNEP was replaced with OMAC in SNEP. We have shown that the proposed protocol is secure for my bit length of messages and is almost as efficient as the CBC-MAC with only one key. OMAC-SNEP can be used not only in Unattended Security System, but also any other Sensor Networks.

Compressed Sensing Based Low Power Data Transmission Systems in Mobile Sensor Networks (모바일 센서 네트워크에서 압축 센싱을 이용한 저전력 데이터 전송 시스템)

  • Hong, Jiyeon;Kwon, Jungmin;Kwon, Minhae;Park, Hyunggon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1589-1597
    • /
    • 2016
  • In this paper, we propose a system in a large-scale environment, such as desert and ocean, that can reduce the overall transmission power consumption in mobile sensor network. It is known that the transmission power consumption in wireless sensor network is proportional to the square of transmission distance. Therefore, if the locations of mobile sensors are far from the sink node, the power consumption required for data transmission increases, leading to shortened operating time of the sensors. Hence, in this paper, we propose a system that can reduce the power consumption by allowing to transmit data only if the transmission range of the sensors is within a predetermined distance. Moreover, the energy efficiency of the overall sensor network can even be improved by reducing the number of data transmissions at the sink node to gateway based on compressed sensing. The proposed system is actually implemented using Arduino and Raspberry Pi and it is confirmed that source data can be approximately decoded even when the gateway received encoded data fewer than the required number of data from the sink node. The performance of the proposed system is analyzed in theory.