• Title/Summary/Keyword: Wireless sensors networks

Search Result 427, Processing Time 0.031 seconds

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Web-based Real Environment Monitoring Using Wireless Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Kim, Min-Ah;Byeon, Ok-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • Ubiquitous computing is one of the key technology areas in the "Project on Development of Ubiquitous computing and network technology" promoted by the Ministry of Science and Technology as a frontier business of the $21^{st}$ century in Korea, which is based on the new concept merging physical space and computer-based cyber space. With recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low-power consumption wireless micro sensor nodes have been available. Using these smart sensor nodes, there are many activities to monitor real world, for example, habitat monitoring, earthquake monitoring and so on. In this paper, we introduce web-based real environment monitoring system incorporating wireless sensor nodes. It collects sensing data produced by some wireless sensor nodes and stores them into a database system to analyze. Our environment monitoring system is composed of a networked camera and environmental sensor nodes, which are called Mica2 and developed by University of California at Berkeley. We have modified and ported network protocols over TinyOS and developed a monitoring application program using the MTS310 and MTS420 sensors that are able to observe temperature, relative humidity, light and accelerator. The sensed data can be accessed user-friendly because our environment monitoring system supports web-based user interface. Moreover, in this system, we can setup threshold values so the system supports a function to inform some anomalous events to administrators. Especially, the system shows two useful pre-processed data as a kind of practical uses: a discomfort index and a septicity index. To make both index values, the system restores related data from the database system and calculates them according to each equation relatively. We can do enormous works using wireless sensor technologies, but just environment monitoring. In this paper, we show just one of the plentiful applications using sensor technologies.

  • PDF

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Wireless Networked System for Transmission Path Self-Calibration of Laser Equipment (레이저 장비의 전송 경로 자가 교정을 위한 무선 네트워크 시스템)

  • Lee, Junyoung;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2020
  • IIoT stands for Industrial Internet of Things used in manufacturing, healthcare, and transportation in networked smart factories. Recently, IIoT's environment requires an automated control system through intelligent cognition to improve efficiency. In particular, IIoT can be applied to automatic calibration of production equipment for improved management in industrial environments. Such automation systems require a wireless network for transmitting industrial data. Self-calibration systems in laser transmission paths using wireless networks can save resources and improve production quality by real-time monitoring and remote control of laser transmission path. In this paper, we propose a wireless networked system for self-calibration of laser equipment that requires a laser transmission path, and we show the results of the prototype evaluation. The self-calibration system of laser equipment measures the coordinates of the laser points with sensors and sends them to the host using the proposed application protocol. We propose a wireless network service for the wired motor controller to align the laser coordinates. Using this wireless network, the host controls the motor by sending a control command of the motor controller in an HTTP message based on the received coordinate values. Finally, we build a prototype system of the proposed design to verify the detection performance and analyze the network performance.

A Study on the WSN Construction Factors for Implementation of U-Disaster Prevention (u-방재 기술 구현을 위한 WSN 구축요소에 관한 연구)

  • Lee, Seok-Cheol;Jeon, Tae-Gun;Sim, Hye-In;Kim, Chang-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.361-364
    • /
    • 2008
  • The Application Model in Wireless Sensor Networks(WSNs) consist of wireless sensor network based on sensor hardwares which is combined the micro-controller, chipset for wireless communication and sensors, middleware for dealing with data processing and user application for common service. Applications in WSN have been applied for environmental monitoring, smart factory and have concentrated the services based on remote monitoring applications which is difficult to watch the situation by human. In this paper, we described the construction model for applying for the Ubiquitous disaster prevention system and deal with its conformity. The proposed system includes the selecting the wireless sensor hardware, routing technique for u-Disaster Prevention, composition of middleware and web-interface for application services.

  • PDF

ID-based Sensor Node Authentication for Multi-Layer Sensor Networks

  • Sung, Soonhwa;Ryou, Jaecheol
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • Despite several years of intense research, the security and cryptography in wireless sensor networks still have a number of ongoing problems. This paper describes how identification (ID)-based node authentication can be used to solve the key agreement problem in a three-layer interaction. The scheme uses a novel security mechanism that considers the characteristics, architecture, and vulnerability of the sensors, and provides an ID-based node authentication that does not require expensive certificates. The scheme describes the routing process using a simple ID suitable for low power and ID exposure, and proposes an ID-based node authentication. This method achieves low-cost communications with an efficient protocol. Results from this study demonstrates that it improves routing performance under different node densities, and reduces the computational cost of key encryption and decryption.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

Design and Implementation of an Efficient Communication System for Collecting Sensor Data in Large Scale Sensors Networks (대규모 센서 네트워크에서 센서 데이터 수집을 위한 효율적인 통신 시스템 설계 및 구현)

  • Jang, Si-woong;Kim, Ji-Seong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.113-119
    • /
    • 2020
  • Large sensor networks require the collection and analysis of data from a large number of sensors. The number of sensors that can be controlled per micro controller is limited. In this paper, we propose how to aggregate sensor data from a large number of sensors using a large number of microcontrollers and multiple bridge nodes, and design and implement an efficient communication system for sensor data collection. Bridge nodes aggregate data from multiple microcontrollers using SPI communication, and transfer the aggregated data to PC servers using wireless TCP/IP communication. In this paper, the communication system was constructed using the Open H/W Aduo Mini and ESP8266 and performance of the system was analyzed. The performance analysis results showed that more than 30 sensing data can be collected per second from more than 700 sensors.

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

Design and implementation of flooding-based query model in wireless sensor networks for indoor environmental monitoring system (실내환경 모니터링시스템을 위한 무선 센서네트워크에서의 플러딩 방식의 질의모델 설계 및 구현)

  • Lee, Seung-Chul;Jung, Sang-Joong;Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.168-177
    • /
    • 2008
  • An indoor environmental monitoring system using IEEE 802.15.4 based wireless sensor network is proposed to monitor the amount of pollutant entering to the room from outside and also the amount of pollutant that is generated in indoor by the building materials itself or human activities. Small-size, low-power wireless sensor node and low power electrochemical sensor board is designed to measure the condition of indoor environment in buildings such as home, offices, commercial premises and schools. In this paper, two query models, the broadcasting query protocol and flooding query protocol, were designed and programmed as a query-based routing protocol in wireless sensor network for an environment monitoring system. The flooding query routing protocol in environment monitoring is very effective as a power saving routing protocol and reliable data transmission between sensor nodes.