• Title/Summary/Keyword: Wireless sensor networks environment

Search Result 386, Processing Time 0.028 seconds

A Real-Time MAC Protocol with Extended Backoff Scheme for Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.341-346
    • /
    • 2011
  • Wireless sensor networks (WSNs) are formed by a great quantity of sensor nodes, which are consisted of battery-powered and some tiny devices. In WSN, both efficient energy management and Quality of Service (QoS) are important issues for some applications. Real-time services are usually employed to satisfy QoS requirements in critical environment. This paper proposes a real-time MAC (Medium Access Control) protocol with extended backoff scheme for wireless sensor networks. The basic idea of the proposed protocol employs (m,k)-firm constraint scheduling which is to adjust the contention window (CW) around the optimal value for decreasing the dynamic failure and reducing collisions DBP (Distant Based Priority). In the proposed protocol, the scheduling algorithm dynamically assigns uniform transmitting opportunities to each node. Numerical results reveal the effect of the proposed backoff mechanism.

Analysis of Energy Consumption and Processing Delay of Wireless Sensor Networks according to the Characteristic of Applications (응용프로그램의 특성에 따른 무선센서 네트워크의 에너지 소모와 처리 지연 분석)

  • Park, Chong Myung;Han, Young Tak;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Wireless sensor networks are used for data collection and processing from the surrounding environment for various applications. Since wireless sensor nodes operate on low computing power, restrictive battery capacity, and low network bandwidth, their architecture model has greatly affected the performance of applications. If applications have high computation complexity or require the real-time processing, the centralized architecture in wireless sensor networks have a delay in data processing. Otherwise, if applications only performed simple data collection for long period, the distributed architecture wasted battery energy in wireless sensors. In this paper, the energy consumption and processing delay were analyzed in centralized and distributed sensor networks. In addition, we proposed a new hybrid architecture for wireless sensor networks. According to the characteristic of applications, the proposed method had the optimal number of wireless sensors in wireless sensor networks.

Fundamental Considerations: Impact of Sensor Characteristics, Application Environments in Wireless Sensor Networks

  • Choi, Dongmin;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • Observed from the recent performance evaluation of clustering schemes in wireless sensor networks, we found that most of them did not consider various sensor characteristics and its application environment. Without considering these, the performance evaluation results are difficult to be trusted because these networks are application-specific. In this paper, for the fair evaluation, we measured several clustering scheme's performance variations in accordance with sensor data pattern, number of sensors per node, density of points of interest (data density) and sensor coverage. According to the experiment result, we can conclude that clustering methods are easily influenced by POI variation. Network lifetime and data accuracy are also slightly influenced by sensor coverage and number of sensors. Therefore, in the case of the clustering scheme that did not consider various conditions, fair evaluation cannot be expected.

Analysis of Packet Transmission Performance for Construction of Wireless Sensor Networks in Indoor Environment (실내환경에서 무선 센서 네트워크구축을 위한 패킷 전송성능평가)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1941-1946
    • /
    • 2009
  • Wireless sensor networks do the monitoring and collecting information in the environment instead of human. Sensor networks are consisted of small sensor nodes with very limited hardware resource and very low network bandwidth. The wireless communication environment causes lots of communication errors so that the sensor network requires error correction technique to increase the reliability of network. The performance of error correction technique could be increased by the researches about the error pattern of CRC. In the paper, we did the performance evaluation - transmission interval, distance between sensor nodes, racket size, and RF power - that affects to the success ratio of data transmission in the indoor environment. we propose the performance metrics of system configuration based on the analysis of performance evaluation.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

Error Adaptive Transport Protocol in Variable Error Rate Environment for Wireless Sensor Networks

  • Dang, Quang-Bui;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4B
    • /
    • pp.208-216
    • /
    • 2007
  • Wireless Sensor Networks (WSNs) are characterized by low capacity on each nodes and links. Wireless links have high bit error rate (BER) parameter that changes frequently due to the changes on network topology, interference, etc. To guarantee reliability in an error-prone environment, a retransmission mechanism can be used. In this mechanism, the number of retransmissions is used as a parameter that controls reliability requirement level. In this paper, we propose an Error Adaptive Transport Protocol (EATP) for WSNs that updates the number of retransmissions regularly to guarantee reliability during bit error rate changes as well as to utilize energy effectively. The said algorithm uses local information, thus, it does not create overhead problem.

A Robust Mutual Authentication Protocol for Wireless Sensor Networks

  • Chen, Tien-Ho;Shih, Wei-Kuan
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.704-712
    • /
    • 2010
  • Authentication is an important service in wireless sensor networks (WSNs) for an unattended environment. Recently, Das proposed a hash-based authentication protocol for WSNs, which provides more security against the masquerade, stolen-verifier, replay, and guessing attacks and avoids the threat which comes with having many logged-in users with the same login-id. In this paper, we point out one security weakness of Das' protocol in mutual authentication for WSN's preservation between users, gateway-node, and sensor nodes. To remedy the problem, this paper provides a secrecy improvement over Das' protocol to ensure that a legal user can exercise a WSN in an insecure environment. Furthermore, by presenting the comparisons of security, computation and communication costs, and performances with the related protocols, the proposed protocol is shown to be suitable for higher security WSNs.

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

Novel Architecture of Self-organized Mobile Wireless Sensor Networks

  • Rizvi, Syed;Karpinski, Kelsey;Razaque, Abdul
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.163-176
    • /
    • 2015
  • Self-organization of distributed wireless sensor nodes is a critical issue in wireless sensor networks (WSNs), since each sensor node has limited energy, bandwidth, and scalability. These issues prevent sensor nodes from actively collaborating with the other types of sensor nodes deployed in a typical heterogeneous and somewhat hostile environment. The automated self-organization of a WSN becomes more challenging as the number of sensor nodes increases in the network. In this paper, we propose a dynamic self-organized architecture that combines tree topology with a drawn-grid algorithm to automate the self-organization process for WSNs. In order to make our proposed architecture scalable, we assume that all participating active sensor nodes are unaware of their primary locations. In particular, this paper presents two algorithms called active-tree and drawn-grid. The proposed active-tree algorithm uses a tree topology to assign node IDs and define different roles to each participating sensor node. On the other hand, the drawn-grid algorithm divides the sensor nodes into cells with respect to the radio coverage area and the specific roles assigned by the active-tree algorithm. Thus, both proposed algorithms collaborate with each other to automate the self-organizing process for WSNs. The numerical and simulation results demonstrate that the proposed dynamic architecture performs much better than a static architecture in terms of the self-organization of wireless sensor nodes and energy consumption.

A Design of Environment monitoring Server Based Wireless Mesh Networks (Wireless Mesh Networks 기반 환경감시서버 설계)

  • Im, Hyeok-Jin;Ju, Hui-Dong;Lee, Meong-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.671-674
    • /
    • 2007
  • USN (Ubuquitous Sensor Network) identifies that networks are able to gather information from various kinds of sensors with RF. In the USN, it is important that sensor nodes deliver stable data by overcoming limited transmission distance and by setting optimum routes. In this paper, we propose a method to overcome the limited distance of sensor nodes using Wireless Mesh Networks. With this method, environmental monitoring system for u-farm support stable data transmission by applying MAP of Wireless Mesh Networks.

  • PDF