• Title/Summary/Keyword: Wireless rechargeable sensor networks

Search Result 13, Processing Time 0.026 seconds

Demand-based charging strategy for wireless rechargeable sensor networks

  • Dong, Ying;Wang, Yuhou;Li, Shiyuan;Cui, Mengyao;Wu, Hao
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.326-336
    • /
    • 2019
  • A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.

Energy-efficient charging of sensors for UAV-aided wireless sensor network

  • Rahman, Shakila;Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Lack of sufficient battery capacity is one of the most important challenges impeding the development of wireless sensor networks (WSNs). Recent innovations in the areas of wireless energy transfer and rechargeable batteries have made it possible to advance WSNs. Therefore, in this article, we propose an energy-efficient charging of sensors in a WSN scenario. First, we have formulated the problem as an integer linear programming (ILP) problem. Then a utility function-based greedy algorithm named UGreedy/UF1 is proposed for solving the problem. Finally, the performance of UGreedy/UF1 is analyzed along with other baseline algorithms: UGreedy/UF2, 2-opt TSP, and Greedy TSP. The simulation results show that UGreedy/UF1 performs better than others both in terms of the deadline missing ratio of sensors and the total energy consumption of UAVs.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.

Sector-based Charging Schedule in Rechargeable Wireless Sensor Networks

  • Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4301-4319
    • /
    • 2017
  • Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

A Tier-Based Duty-Cycling Scheme for Forest Monitoring

  • Zhang, Fuquan;Gao, Deming;Joe, In-Whee
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1320-1330
    • /
    • 2017
  • Wireless sensor networks for forest monitoring are typically deployed in fields in which manual intervention cannot be easily accessed. An interesting approach to extending the lifetime of sensor nodes is the use of energy harvested from the environment. Design constraints are application-dependent and based on the monitored environment in which the energy harvesting takes place. To reduce energy consumption, we designed a power management scheme that combines dynamic duty cycle scheduling at the network layer to plan node duty time. The dynamic duty cycle scheduling is realized based on a tier structure in which the network is concentrically organized around the sink node. In addition, the multi-paths preserved in the tier structure can be used to deliver residual packets when a path failure occurs. Experimental results show that the proposed method has a better performance.

Closed Walk Ferry Route Design for Wireless Sensor Networks

  • Dou, Qiang;Wang, Yong;Peng, Wei;Gong, Zhenghu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2357-2375
    • /
    • 2013
  • Message ferry is a controllable mobile node with large capacity and rechargeable energy to collect information from the sensors to the sink in wireless sensor networks. In the existing works, route of the message ferry is often designed from the solutions of the Traveling Salesman Problem (TSP) and its variants. In such solutions, the ferry route is often a simple cycle, which starts from the sink, access all the sensors exactly once and moves back to the sink. In this paper, we consider a different case, where the ferry route is a closed walk that contains more than one simple cycle. This problem is defined as the Closed Walk Ferry Route Design (CWFRD) problem in this paper, which is an optimization problem aiming to minimize the average weighted delay. The CWFRD problem is proved to be NP-hard, and the Integer Linear Programming (ILP) formulation is given. Furthermore, a heuristic scheme, namely the Initialization-Split-Optimization (ISO) scheme is proposed to construct closed walk routes for the ferry. The experimental results show that the ISO algorithm proposed in this paper can effectively reduce the average weighted delay compared to the existing simple cycle based scheme.

A Scheduling Scheme Considering Multiple-Target Coverage and Connectivity in Wireless Sensor Networks (무선 센서 네트워크에서 다중 타겟 커버리지와 연결성을 고려한 스케줄링 기법)

  • Kim, Yong-Hwan;Han, Youn-Hee;Park, Chan-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.453-461
    • /
    • 2010
  • A critical issue in wireless sensor networks is an energy-efficiency since the sensor batteries have limited energy power and, in most cases, are not rechargeable. The most practical manner relate to this issue is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy. Especially, CTC (Connected Target Coverage) problem has been considered as a representative energy-efficiency problem considering connectivity as well as target coverage. In this paper, we propose a new energy consumption model considering multiple-targets and create a new problem, CMTC (Connected Multiple-Target Coverage) problem, of which objective is to maximize the network lifetime based on the energy consumption model. Also, we present SPT (Shortest Path based on Targets)-Greedy algorithm to solve the problem. Our simulation results show that SPT-Greedy algorithm performs much better than previous algorithm in terms of the network lifetime.

Solar Energy Harvesting Wireless Sensor Network Simulator (태양 에너지 기반 무선 센서 네트워크 시뮬레이터)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.477-485
    • /
    • 2015
  • Most existing simulators for wireless sensor networks(WSNs) are modeling battery-based sensors and providing MAC and routing protocols designed for battery-based WSNs. However, recently, as energy harvesting sensor systems have been studied more extensively, there is an increasing need for appropriate simulators, but few related studies have employed such simulators. Unlike existing simulators, simulators for energy harvesting WSNs require a new energy model that is integrated with the energy-harvesting model, rechargeable battery model, and energy-consuming model. Additionally, it should enable the applications of the well-known MAC and routing protocols designed for energy-harvesting WSNs, as well as a user-friendly interface for convenience. In this work, we design and implement a user-friendly simulator for solar energy-harvesting WSNs.

A-PEGASIS : Advanced Power Efficient GAthering in Sensor Information Systems (개선된 센서 라우팅 방식 : A-PEGASIS)

  • Suh, Chang-Jin;Yang, Jin-Ung
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.458-465
    • /
    • 2007
  • Wireless Sensor Network(WSN) is a special network that collects measured data by sensor nodes in the predefined sensor field and forwards them to the base station in a distance using their own routing scheme. WSN requires routing techniques to maximize energy efficiency because sensor nodes have non-rechargeable and thus limited energy. Characteristics of WSN are various according to applications, many of routing algorithms have been proposed. This paper proposes an algorithm called A-PEGASIS that basically bases on PEGASIS and enhances in two aspects - an elegant chain generation algorithm and periodical update of chains. We compare performance of the previous algorithm of LEACH, PEGASIS, PEDAP and PEDAP-PA with ours through simulation. It confirms that the A-PEGASIS is most superior in terms of average WSN lifetime and high probability of node survival rate during WSN life time.