A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.80-87
/
2022
Lack of sufficient battery capacity is one of the most important challenges impeding the development of wireless sensor networks (WSNs). Recent innovations in the areas of wireless energy transfer and rechargeable batteries have made it possible to advance WSNs. Therefore, in this article, we propose an energy-efficient charging of sensors in a WSN scenario. First, we have formulated the problem as an integer linear programming (ILP) problem. Then a utility function-based greedy algorithm named UGreedy/UF1 is proposed for solving the problem. Finally, the performance of UGreedy/UF1 is analyzed along with other baseline algorithms: UGreedy/UF2, 2-opt TSP, and Greedy TSP. The simulation results show that UGreedy/UF1 performs better than others both in terms of the deadline missing ratio of sensors and the total energy consumption of UAVs.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.7
/
pp.3412-3432
/
2019
Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.
Alkhalidi, Sadam;Wang, Dong;Al-Marhabi, Zaid A. Ali
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.9
/
pp.4301-4319
/
2017
Adopting mobile chargers (MC) in rechargeable wireless sensors network (R-WSN) to recharge sensors can increase network efficiency (e.g., reduce MC travel distance per tour, reduce MC effort, and prolong WSN lifetime). In this study, we propose a mechanism to split the sensing field into partitions that may be equally spaced but differ in distance to the base station. Moreover, we focus on minimizing the MC effort by providing a new charging mechanism called the sector-based charging schedule (SBCS), which works to dispatch the MC in charging trips to the sector that sends many charging requests and suggesting an efficient sensor-charging algorithm. Specifically, we first utilize the high ability of the BS to divide the R-WSN field into sectors then it select the cluster head for each sector to reduce the intra-node communication. Second, we formulate the charging productivity as NP-hard problem and then conduct experimental simulations to evaluate the performance of the proposed mechanism. An extensive comparison is performed with other mechanisms. Experimental results demonstrate that the SBCS mechanism can prolong the lifetime of R-WSNs by increasing the charging productivity about 20% and reducing the MC effort by about 30%.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.7
/
pp.3494-3510
/
2019
Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.
Wireless sensor networks for forest monitoring are typically deployed in fields in which manual intervention cannot be easily accessed. An interesting approach to extending the lifetime of sensor nodes is the use of energy harvested from the environment. Design constraints are application-dependent and based on the monitored environment in which the energy harvesting takes place. To reduce energy consumption, we designed a power management scheme that combines dynamic duty cycle scheduling at the network layer to plan node duty time. The dynamic duty cycle scheduling is realized based on a tier structure in which the network is concentrically organized around the sink node. In addition, the multi-paths preserved in the tier structure can be used to deliver residual packets when a path failure occurs. Experimental results show that the proposed method has a better performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.10
/
pp.2357-2375
/
2013
Message ferry is a controllable mobile node with large capacity and rechargeable energy to collect information from the sensors to the sink in wireless sensor networks. In the existing works, route of the message ferry is often designed from the solutions of the Traveling Salesman Problem (TSP) and its variants. In such solutions, the ferry route is often a simple cycle, which starts from the sink, access all the sensors exactly once and moves back to the sink. In this paper, we consider a different case, where the ferry route is a closed walk that contains more than one simple cycle. This problem is defined as the Closed Walk Ferry Route Design (CWFRD) problem in this paper, which is an optimization problem aiming to minimize the average weighted delay. The CWFRD problem is proved to be NP-hard, and the Integer Linear Programming (ILP) formulation is given. Furthermore, a heuristic scheme, namely the Initialization-Split-Optimization (ISO) scheme is proposed to construct closed walk routes for the ferry. The experimental results show that the ISO algorithm proposed in this paper can effectively reduce the average weighted delay compared to the existing simple cycle based scheme.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.3B
/
pp.453-461
/
2010
A critical issue in wireless sensor networks is an energy-efficiency since the sensor batteries have limited energy power and, in most cases, are not rechargeable. The most practical manner relate to this issue is to use a node wake-up scheduling protocol that some sensor nodes stay active to provide sensing service, while the others are inactive for conserving their energy. Especially, CTC (Connected Target Coverage) problem has been considered as a representative energy-efficiency problem considering connectivity as well as target coverage. In this paper, we propose a new energy consumption model considering multiple-targets and create a new problem, CMTC (Connected Multiple-Target Coverage) problem, of which objective is to maximize the network lifetime based on the energy consumption model. Also, we present SPT (Shortest Path based on Targets)-Greedy algorithm to solve the problem. Our simulation results show that SPT-Greedy algorithm performs much better than previous algorithm in terms of the network lifetime.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.2
/
pp.477-485
/
2015
Most existing simulators for wireless sensor networks(WSNs) are modeling battery-based sensors and providing MAC and routing protocols designed for battery-based WSNs. However, recently, as energy harvesting sensor systems have been studied more extensively, there is an increasing need for appropriate simulators, but few related studies have employed such simulators. Unlike existing simulators, simulators for energy harvesting WSNs require a new energy model that is integrated with the energy-harvesting model, rechargeable battery model, and energy-consuming model. Additionally, it should enable the applications of the well-known MAC and routing protocols designed for energy-harvesting WSNs, as well as a user-friendly interface for convenience. In this work, we design and implement a user-friendly simulator for solar energy-harvesting WSNs.
Wireless Sensor Network(WSN) is a special network that collects measured data by sensor nodes in the predefined sensor field and forwards them to the base station in a distance using their own routing scheme. WSN requires routing techniques to maximize energy efficiency because sensor nodes have non-rechargeable and thus limited energy. Characteristics of WSN are various according to applications, many of routing algorithms have been proposed. This paper proposes an algorithm called A-PEGASIS that basically bases on PEGASIS and enhances in two aspects - an elegant chain generation algorithm and periodical update of chains. We compare performance of the previous algorithm of LEACH, PEGASIS, PEDAP and PEDAP-PA with ours through simulation. It confirms that the A-PEGASIS is most superior in terms of average WSN lifetime and high probability of node survival rate during WSN life time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.