• Title/Summary/Keyword: Wireless powered

Search Result 174, Processing Time 0.023 seconds

Trust-Based Filtering of False Data in Wireless Sensor Networks (신뢰도 평가를 통한 무선 센서 네트워크에서의 거짓 데이타 제거)

  • Hur, Jun-Beom;Lee, Youn-Ho;Yoon, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.76-90
    • /
    • 2008
  • Wireless sensor networks are expected to play a vital role in the upcoming age of ubiquitous computing such as home environmental, industrial, and military applications. Compared with the vivid utilization of the sensor networks, however, security and privacy issues of the sensor networks are still in their infancy because unique challenges of the sensor networks make it difficult to adopt conventional security policies. Especially, node compromise is a critical threat because a compromised node can drain out the finite amount of energy resources in battery-powered sensor networks by launching various insider attacks such as a false data injection. Even cryptographic authentication mechanisms and key management schemes cannot suggest solutions for the real root of the insider attack from a compromised node. In this paper, we propose a novel trust-based secure aggregation scheme which identifies trustworthiness of sensor nodes and filters out false data of compromised nodes to make resilient sensor networks. The proposed scheme suggests a defensible approach against the insider attack beyond conventional cryptographic solutions. The analysis and simulation results show that our aggregation scheme using trust evaluation is more resilient alternative to median.

MBus: A Fully Synthesizable Low-power Portable Interconnect Bus for Millimeter-scale Sensor Systems

  • Lee, Inhee;Kuo, Ye-Sheng;Pannuto, Pat;Kim, Gyouho;Foo, Zhiyoong;Kempke, Ben;Jeong, Seokhyeon;Kim, Yejoong;Dutta, Prabal;Blaauw, David;Lee, Yoonmyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • This paper presents a fully synthesizable low power interconnect bus for millimeter-scale wireless sensor nodes. A segmented ring bus topology minimizes the required chip real estate with low input/output pad count for ultra-small form factors. By avoiding the conventional open drain-based solution, the bus can be fully synthesizable. Low power is achieved by obviating a need for local oscillators in member nodes. Also, aggressive power gating allows low-power standby mode with only 53 gates powered on. An integrated wakeup scheme is compatible with a power management unit that has nW standby mode. A 3-module system including the bus is fabricated in a 180 nm process. The entire system consumes 8 nW in standby mode, and the bus achieves 17.5 pJ/bit/chip.

Power Splitting-based Analog Network Coding for Improving Physical Layer Security in Energy Harvesting Networks (에너지 하베스팅 네트워크에서 물리계층 보안을 향상시키기 위한 파워 분할 기반의 아날로그 네트워크 코딩)

  • Lee, Kisong;Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1849-1854
    • /
    • 2017
  • Recently, RF energy harvesting, in which energy is collected from the external RF signals, is considered as a promising technology to resolve the energy shortage problem of wireless sensors. In addition, it is important to guarantee secure communication between sensors for implementing Internet-of-Things. In this paper, we propose a power splitting-based network analog coding for maximizing a physical layer security in 2-hop networks where the wireless-powered relay can harvest energy from the signals transmitted by two sources. We formulate systems where two sources, relay, and eavesdropper exist, and find an optimal power splitting ratio for maximizing the minimum required secrecy capacity using an exhaustive search. Through simulations under various environments, it is demonstrated that the proposed scheme improves the minimum required secrecy capacity by preventing the eavesdropper from overhearing source signals, compared to the conventional scheme.

A Study on an Efficient Routing Scheme for using a priority scheme in Wireless Sensor Networks (무선 센서 네트워크 환경에서 우선순위 기법을 이용한 효율적인 경로 설정에 대한 연구)

  • Won, Dae-Ho;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.40-46
    • /
    • 2011
  • Wireless Sensor Networks(WSNs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm of cross-layer control between 2-layer and 3-layer to deriver the sensing data from the end node to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self priority routing scheme under UC Berkely TinyOS platform. The proposed beacon based priority routing (BPR) algorithm scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing.

Optimization of image data for Mobile Game Gontents (모바일게임 콘텐츠 개발을 위한 이미지 데이터 최적화)

  • Lee, Hwan-joong;Kim, young-bong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.38-42
    • /
    • 2008
  • In the 2000s, the PC package game market has withered, but the internet based on-line game, the wireless internet based mobile game and high-powered console game market have been main stream. Among those markets, mobile game market has rapidly increased because it has 'mobility' that overcomes the limitation of time and area. But, unlike other platforms, mobile game user have to pay the higher price for download mobile game contents through the wireless internet and mobile game developer have to overcome the limitation of storage memory capacity.of mobile phone. Chiefly, the image data consume the storage capacity of mobile game contents, this paper present a technology to optimize image data for mobile game contents through analyzing type of compression method and image formats.

  • PDF

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

Interleaved Hop-by-Hop Authentication in Wireless Sensor Network Using Fuzzy Logic to Defend against Denial of Service Attack (인터리브드 멀티홉 인증을 적용한 무선 센서네트워크에서 퍼지로직을 이용한 서비스 거부 공격에 대한 방어 기법)

  • Kim, Jong-Hyun;Cho, Tac-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • When sensor networks are deployed in open environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False report attack can lead to not only false alarms but also the depletion of limited energy resources in battery powered networks. The Interleaved hop-by-hop authentication (IHA) scheme detects such false reports through interleaved authentication. In IHA, when a report is forwarded to the base station, all nodes on the path must spend energies on receiving, authenticating, and transmitting it. An dversary can spend energies in nodes by using the methods as a relaying attack which uses macro. The Adversary aim to drain the finite amount of energies in sensor nodes without sending false reports to BS, the result paralyzing sensor network. In this paper, we propose a countermeasure using fuzzy logic from the Denial of Service(DoS) attack and show an efficiency of energy through the simulataion result.

Real-time wireless marine radioactivity monitoring system using a SiPM-based mobile gamma spectroscopy mounted on an unmanned marine vehicle

  • Min Sun Lee;Soo Mee Kim;Mee Jang;Hyemi Cha;Jung-Min Seo;Seungjae Baek;Jong-Myoung Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2158-2165
    • /
    • 2023
  • Marine radioactivity monitoring is critical for taking immediate action in case of unexpected nuclear accidents at nuclear facilities located near coastal areas. Especially when the level of contamination is not predictable, mobile monitoring systems will be useful for wide-area ocean radiation survey and for determination of the level of radioactivity. Here, we used a silicon photomultiplier and a high-efficiency GAGG crystal to fabricate a compact, battery-powered gamma spectroscopy that can be used in an ocean environment. The developed spectroscopy has compact dimensions of 6.5 × 6.5× 8 cm3 and weighs 560 g. We used LoRa, a low-power wireless protocol for communication. Successful data transmission was achieved within 1.4 m water depth. The developed gamma spectroscopy was able to detect radioactivity from a 137Cs point source (3.7 kBq) at a distance of 20 cm in water. Moreover, we demonstrated an unmanned radioactivity monitoring system in a real sea by combining unmanned surface vehicle with the developed gamma spectroscopy. A hidden 137Cs source (3.07 MBq) was detected by the unmanned system at a distance of 3 m. After successfully testing the developed mobile spectroscopy in an ocean environment, we believe that our proposed system will be an effective solution for mobile real-time marine radioactivity monitoring.

Analysis and study of Deep Reinforcement Learning based Resource Allocation for Renewable Powered 5G Ultra-Dense Networks

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.226-234
    • /
    • 2024
  • The frequent handover problem and playing ping-pong effects in 5G (5th Generation) ultra-dense networking cannot be effectively resolved by the conventional handover decision methods, which rely on the handover thresholds and measurement reports. For instance, millimetre-wave LANs, broadband remote association techniques, and 5G/6G organizations are instances of group of people yet to come frameworks that request greater security, lower idleness, and dependable principles and correspondence limit. One of the critical parts of 5G and 6G innovation is believed to be successful blockage the board. With further developed help quality, it empowers administrator to run many systems administration recreations on a solitary association. To guarantee load adjusting, forestall network cut disappointment, and give substitute cuts in case of blockage or cut frustration, a modern pursuing choices framework to deal with showing up network information is require. Our goal is to balance the strain on BSs while optimizing the value of the information that is transferred from satellites to BSs. Nevertheless, due to their irregular flight characteristic, some satellites frequently cannot establish a connection with Base Stations (BSs), which further complicates the joint satellite-BS connection and channel allocation. SF redistribution techniques based on Deep Reinforcement Learning (DRL) have been devised, taking into account the randomness of the data received by the terminal. In order to predict the best capacity improvements in the wireless instruments of 5G and 6G IoT networks, a hybrid algorithm for deep learning is being used in this study. To control the level of congestion within a 5G/6G network, the suggested approach is put into effect to a training set. With 0.933 accuracy and 0.067 miss rate, the suggested method produced encouraging results.

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.