• Title/Summary/Keyword: Wireless power

Search Result 3,245, Processing Time 0.04 seconds

Development of Wireless Data Acquisition Device for Individual Load to Improve Function of Smart Meter Applied to AMI (AMI 적용 스마트 미터 기능향상을 위한 개별부하 상세 데이터 무선 취득장치 개발)

  • Sung, Byung-Chul;Bae, Sun-Ho;Park, Woo-Jae;Jeon, Seung-Wook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1795-1803
    • /
    • 2011
  • Advanced Metering Infrastructure (AMI) is one of the important components to form a smart-gird, which is an advanced power system by combining the power system with the communication systems. This AMI makes it possible to exchange information between operators and consumers for the efficient and reliable operation of the power system through a smart meter or a In-Home Display. However, according to the increase of the demanded information such as the power quality, the accurate load-profile, and the billing data to help customers manage their power consumption, it is necessary to gather more accurate analytical data from each house appliances and transfer it to the smart meter for synthesizing the information and controlling each loads. In this paper, the development of the wireless data acquisition device for the individual load data metering, which is connected with the smart meter for advanced functions, is proposed. AVR, a kind of microcontroller, and Bluetooth are used and integrated into the proposed the wireless data acquisition device to transmit the detailed power data (voltage and current) to the smart meter. To verify the effectiveness of the proposed system, a hardware experiment is carried out including the confirmation of the possibility for providing the more various information by applying analysis algorithms to the obtained data. Also, the application structure of the wireless data acquisition device to gather the data from the various house appliances is presented.

Resonant Type Wireless Power Transfer Using an Optimized Antenna at 1m Distance (1m 거리에서 최적화된 안테나를 통한 공진방식 무선전력전송)

  • Kim, Young Hyun;Ryu, Daun;Park, Daekil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2016
  • This paper has optimized WPT (wireless power transfer) antenna, and compared EM (electromagnetic) simulation result with measurement for the magnetic resonant type standard of A4WP (alliance for wireless power) using 6.78MHz frequency and 1m distance. Power transmission distance is affected by various factors such as system shape, antenna size, and resonator coil pitch etc, which were confirmed by the EM simulation. By simulation an optimized WPT antenna was designed for a fixed distance, and the transmission loss ${\mid}S_{21}{\mid}$ has been calculated with changing distance. Measurement was carried for the fabricated antenna, and the measured transmission loss is 1.5dB with 70% efficiency at maximum 1.3m distance compared to the simulated loss of 1.6dB with 69% efficiency

Application of Wireless Power Transmission Technology to Contactless Umbilical Connector of Unmanned Vehicle (무선 이동체의 비접촉 배꼽장치를 위한 무선전력전송 기술의 응용)

  • Shin, Yujun;Park, Jaehyoung;Kim, Jonghoon;Kwon, Byunggi;Eun, Heehyun;Ahn, Seungyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.713-722
    • /
    • 2017
  • In the future battlefield, the role of the unmanned vehicle is very important. Currently, charging and management systems for unmanned vehicles are all wired. However, for convenience and stability, it is desirable that the charging of the unmanned vehicle uses wireless power transfer system. In this paper, we have studied the application of wireless power transfer system to the charging of unmanned vehicles. Considering the size of the unmanned vehicle and the required power, the transmission coil and the receiving coil are designed through the finite element analysis based magnetic field simulation. The coil was made according to the simulation results and the circuit simulation was performed through the measured parameter values. Finally, we show that wireless power transmission can be applied to unmanned mobile charging through actual experiments.

Implementation of Wireless Power Transmission System for Multiple Receivers Considering Load Impedance Variation (부하 임피던스 변화를 고려한 복수 수신기 무선전력전송 구현)

  • Kim, Young Hyun;Park, Dae Kil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • This paper proposes a single-input multiple-output (SIMO) self-resonant wireless power transmission system for transmitting power to multiple receivers and the characteristics are simulated and measured. A 600 mm diameter transmission single loop, a 600 mm diameter helical transmission resonant coil, an external diameter 900 mm planar spiral reception resonant coil, and an $80{\times}60mm^2$ flat plate square coil as a receiver are used to form a wireless power transmission system 600 mm away with the table structure. For optimal characteristics, the wireless power transmission coils are designed by EM simulation and equivalent circuit analysis, and the characteristics are simulated and measured. The variation of the efficiency with distance from the center of the spiral resonant coil is analyzed and the measured efficiency is 57% for one receiver and for the two receivers, the efficiency is 37% for each receiver.

A Study on the Performance of Energy-efficient System with Go-back-N ARQ Protocol in Wireless Home Network Environment (무선 홈 네트워크 환경에서 Go-back-N ARQ 프로토콜을 적용한 에너지 효율적인 시스템의 성능에 대한 연구)

  • Roh, Jae-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In traditional wireless communication systems the main power consumption is due to the actual transmissions power. Therefore, energy-constrained wireless networks have gained considerable research attention in recent years. Multiple-input-multiple-output (MIMO) structure, or multiple antenna communication is one of the techniques that has gain considerable importance in wireless systems and networks. In this paper, BER and throughput performance of MISO system with Go-back-N ARQ(Automatic Repeat Request) technique in wireless networks are analyzed and the energy consumption of MISO-based wireless networks is compared with conventional SISO-based wireless networks. Obtained results show the applicability of MISO system with Go-back-N ARQ technique in wireless networks with smart system design.

  • PDF

Self-reliant wireless health monitoring based on tuned-mass-damper mechanism

  • Makihara, Kanjuro;Hirai, Hidekazu;Yamamoto, Yuta;Fukunaga, Hisao
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1625-1642
    • /
    • 2015
  • We propose an electrically self-reliant structural health monitoring (SHM) system that is able to wirelessly transmit sensing data using electrical power generated by vibration without the need for additional external power sources. The provision of reliable electricity to wireless SHM systems is a highly important issue that has often been ignored, and to expand the applicability of various wireless SHM innovations, it will be necessary to develop comprehensive wireless SHM devices including stable electricity sources. In light of this need, we propose a new, highly efficient vibration-powered generator based on a tuned-mass-damper (TMD) mechanism that is quite suitable for vibration-based SHM. The charging time of the TMD generator is shorter than that of conventional generators based on the impedance matching method, and the proposed TMD generator can harvest 16 times the amount of energy that a conventional generator can. The charging time of an SHM wireless transmitter is quantitatively formulated. We conduct wireless monitoring experiments to validate a wireless SHM system composed of a self-reliant SHM and a vibration-powered TMD generator.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.

Optimal Design of Volume Reduction for Capacitive-coupled Wireless Power Transfer System using Leakage-enhanced Transformer (누설집중형 변압기를 이용한 전계결합형 무선전력전송 시스템의 부피저감 최적설계 연구)

  • Choi, Hee-Su;Jeong, Chae-Ho;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.469-475
    • /
    • 2017
  • Using impedance matching techniques as a way to increase system power transferability in capacitive wireless power transmission has been widely investigated in conventional studies. However, these techniques tend to increase the circuit volume and thus counterbalance the advantage of the simplicity in the energy link structure. In this paper, a compact circuit topology with one leakage-enhanced transformer is proposed in order to minimize the circuit volume for the capacitive power transfer system. This topology achieves a reactive compensation, and the system quality factor value can be reduced by the turn ratio. As a result, this topology not only reduces the overall system volume but also minimizes the voltage stress of the link capacitor. An optimal design guideline for the leakage-enhanced transformer is also presented. The advantages of the proposed scheme over the conventional method in terms of power efficiency and circuit volume are revealed through an analytic comparison. The feasibility of applying the new topology is also verified by conducting 50 W hardware tests.

High Efficiency Rectenna for Wireless Power Transmission Using Harmonic Suppressed Dual-mode Band-pass Filter (고조파 억압 이중모드 대역통과 여파기를 이용한 2.45 GHz 고효율 렉테나 설계)

  • Hong, Tae-Ui;Jeon, Bong-Wook;Lee, Hyun-Wook;Yun, Tae-Soon;Kang, Yong-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.64-72
    • /
    • 2009
  • In this paper, a high efficiency 2.45 GHz rectenna with a microstrip patch antenna and a dual-mode band-pass filter in which the 2nd and 3rd harmonics are suppressed, is presented. From the experimental results, the 2.45GHz rectenna using 3rd harmonic suppressed dual-mode BPF shows the conversion efficiency of 41.6% with incident power density of 0.3 mW/cm2 and the received power of 1.66 mW. This result shows high conversion efficiency because the received power of this rectenna is lower than other rectennas to be compared with. This rectenna can be applied to the WPT (Wireless Power Transmission) field for energy harvesting. Also, it is expected to be used to provide the stand-by power for the low power devices for USN, and wireless power transfer in sensor application of MEMS devices.

  • PDF

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.