• 제목/요약/키워드: Wireless power

검색결과 3,245건 처리시간 0.033초

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

Design of Wireless Power Transfer System for Railway Application

  • Hwang, Kiwon;Kim, Seonghwan;Kim, Seongkyu;Chun, Yangbae;Ahn, Seungyoung
    • International Journal of Railway
    • /
    • 제5권4호
    • /
    • pp.167-174
    • /
    • 2012
  • As wireless power transfer (WPT) technologies emerge in a wide range of applications including public transportation, many expect that applying the technology to the current railway systems will bring positive effects to current railway systems. In this paper, we introduce design methodology of a WPT system for railway application. Fundamental principles of magnetic fields and a WPT circuit are first analyzed, and advantages and efficiency of a possible train system are discussed. It then examines other significant factors such as performance requirements and EMC criteria to design a wireless train system.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • 스마트미디어저널
    • /
    • 제3권1호
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.

Analysis of Efficiencies for Multiple-Input Multiple-Output Wireless Power Transfer Systems

  • Kim, Sejin;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • 제16권2호
    • /
    • pp.126-133
    • /
    • 2016
  • Wireless power transfer (WPT) efficiencies for multiple-input multiple-output (MIMO) systems are formulated with a goal of achieving their maximums using Z matrices. The maximum efficiencies for any arbitrarily given configurations are obtained using optimum loads, which can be determined numerically through adequate optimization procedures in general. For some simpler special cases (single-input single-output, single-input multiple-output, and multiple-input single-output) of the MIMO systems, the efficiencies and optimum loads to maximize them can be obtained using closed-form expressions. These closed-form solutions give us more physical insight into the given WPT problem. These efficiencies are evaluated theoretically based on the presented formulation and also verified with comparisons with circuit- and EM-simulation results. They are shown to lead to a good agreement. This work may be useful for construction of the wireless Internet of Things, especially employed with energy autonomy.

RF-ID 시스템에서 안테나에 따른 무선전력전송에 관한 연구 (A Study on the Wireless Power Transmission according to the Antenna for RF-ID System)

  • 김용상;임상욱;김양모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1445-1447
    • /
    • 2004
  • In recent years, the smart card is widely applied for wireless communication, tracking, transportation logistics, diagnostic monitoring, access control and security. RF-ID system is universally applicable. Passive RF-ID system consists of reader and passive tag. The reader transmits energy and simple information to a tag by wireless and the power from the reader is transformed for controller, FRAM and Bluetooth module. In this paper, proposed for the improvement of wireless power transmission and demonstrated the propriety through experiments in several conditions.

  • PDF

배전설비의 온라인 모니터링과 진단 기술 동향 (A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments)

  • 임완수;이태우;여운철;이성길;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

전기자동차용 고효율 무선 온보드 충전기의 설계 (Design of the High Efficiency Wireless On-Board Charger for Electric Vehicles)

  • 트란덕홍;부반빈;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.27-28
    • /
    • 2015
  • In this paper a high efficiency wireless on-board charger for Electric Vehicle (EV) is proposed and the theoretical analysis based on the two-port network model to come up with suitable design for the battery charge application is presented. The proposed Wireless Power Transfer (WPT) method has adopted four-coil system with air core and its superior performance is proved by comparing it to the conventional two-coil system by the mathematical analysis. In addition, since the proposed WPT converter is able to operate at an almost constant frequency regardless of the load, CC/CV charge of the battery can be simply implemented. A 6.6kW prototype is implemented with 20cm air gap to prove the validity of the proposed method. The experimental results show that the dc to dc conversion efficiency of the proposed system achieves 97.08% at 3.7 kW.

  • PDF

Leakage Magnetic Field Suppression Using Dual-Transmitter Topology in EV Wireless Charging

  • Zhu, Guodong;Gao, Dawei;Lin, Shulin
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.625-636
    • /
    • 2019
  • This paper proposes an active leakage magnetic field (LMF) suppression scheme, which uses the dual-transmitter (DT) topology, for EV wireless charging systems (EVWCS). The two transmitter coils are coplanar, concentric and driven by separate inverters. The LMF components generated by the three coils cancel each other out to reduce the total field strength. This paper gives a detailed theoretical analysis on the operating principles of the proposed scheme. Finite element analysis is used to simulate the LMF distribution patterns. Experimental results show that when there is no coil misalignment, 97% of the LMF strength can be suppressed in a 1kW prototype. These results also show that the impact on efficiency is small. The trade-off between LMF suppression and efficiency is revealed, and a control strategy to balance these two objectives is presented.

Small-IoT 환경에서 이기종 네트워크를 활용한 스마트 모바일 단말의 에너지 효율적 실시간 컴퓨팅 기법 (Energy-efficient Real-time Computing by Utilizing Heterogenous Wireless Interfaces of the Smart Mobile Device in Small-IoT Environments)

  • 임성화
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.108-112
    • /
    • 2021
  • For smart mobile devices, the wireless communication module is one of the hardware modules that consume the most energy. If we can build a multi-channel multi-interface environment using heterogeneous communication modules and operate them dynamically, data transmission performance can be highly improved by increasing the parallelism. Also, because these heterogeneous modules have different data rates, transmission ranges, and power consumption, we can save energy by exploiting a power efficient and low speed wireless interface module to transmit/receive sporadic small data. In this paper, we propose a power efficient data transmission method using heterogeneous communication networks. We also compared the performance of our proposed scheme to a conventional scheme, and proved that our proposed scheme can save energy while guaranteeing reasonable data delivery time.

최적 효율 무선 전력 전송을 위한 Magnetic Beam 형성 (Magnetic Beamforming for Optimum Efficiency Wireless Power Transfer)

  • 정형존;최익
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.79-84
    • /
    • 2020
  • 무선 전력 전송은 유선 전력 전송 보다 편리하지만 전송거리가 짧고 효율이 낮다. 또한, 여러 장치를 동시에 충전하기 어렵다. 본 논문에서는 무선 전력 전송의 전송 거리를 증가시키고 효율을 향상시키기 위해 다수의 송신코일을 이용해서 Magnetic Beam을 형성하는 방법을 제안한다. 이를 위해 송신코일 전류와 수신코일 중심에서의 자속밀도 사이의 관계를 모델링하고, 의사역행렬(Pseudoinverse)의 특성을 이용해 최적의 송신코일 전류를 계산한다. 마지막으로 Simulation을 통해 제안한 방법의 타당성을 검증한다.