• 제목/요약/키워드: Wireless networks security

검색결과 580건 처리시간 0.024초

Hyper-encryption Scheme for Data Confidentiality in Wireless Broadband (WiBro) Networks

  • Hamid, Abdul;Hong, Choong-Seon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.1096-1097
    • /
    • 2007
  • We address the data confidentiality for wireless broadband (WiBro) networks. In WiBro, as the channel is wireless in nature, it suffers from passive and active attack. Passive attack, for example is to decrypt traffic based on statistical analysis and active attack is to modify traffic or inject new traffic from unauthorized mobile stations. Due to high mobility, frequent session key distribution is a bottleneck for the mobile stations. In aspect of WiBro, there is a communication between mobile station to base station, and also in mobile station to mobile station. It is expected to ensure data confidentiality while maintaining minimum overhead for the resource constrained mobile stations. In this paper, we proposed a security framework based on the concept of hyper-encryption to provide data confidentiality for wireless broadband networks.

Robust Cooperative Relay Beamforming Design for Security

  • Gong, Xiangwu;Dong, Feihong;Li, Hongjun;Shao, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4483-4501
    • /
    • 2015
  • In this paper, we investigate a security transmission scheme at the physical layer for cooperative wireless relay networks in the presence of a passive eavesdropper. While the security scheme has been previously investigated with perfect channel state information(CSI) in the presence of a passive eavesdropper, this paper focuses on researching the robust cooperative relay beamforming mechanism for wireless relay networks which makes use of artificial noise (AN) to confuse the eavesdropper and increase its uncertainty about the source message. The transmit power used for AN is maximized to degrade the signal-to-interference-plus-noise-ratio (SINR) level at the eavesdropper, while satisfying the individual power constraint of each relay node and worst-case SINR constraint at the desired receiver under a bounded spherical region for the norm of the CSI error vector from the relays to the destination. Cooperative beamforming weight vector in the security scheme can be obtained by using S-Procedure and rank relaxation techniques. The benefit of the proposed scheme is showed in simulation results.

Food Security through Smart Agriculture and the Internet of Things

  • Alotaibi, Sara Jeza
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.33-42
    • /
    • 2022
  • One of the most pressing socioeconomic problems confronting humanity on a worldwide scale is food security, particularly in light of the expanding population and declining land productivity. These causes have increased the number of people in the world who are at risk of starving and have caused the natural ecosystems to degrade at previously unheard-of speeds. Happily, the Internet of Things (IoT) development provides a glimmer of light for those worried about food security through smart agriculture-a development that is particularly relevant to automating food production operations in order to reduce labor expenses. When compared to conventional farming techniques, smart agriculture has the benefit of maximizing resource use through precise chemical input application and regulation of environmental factors like temperature and humidity. Farmers may make data-driven choices about the possibility of insect invasion, natural disasters, anticipated yields, and even prospective market shifts with the use of smart farming tools. The technical foundation of smart agriculture serves as a potential response to worries about food security. It is made up of wireless sensor networks and integrated cloud computing modules inside IoT.

유비쿼터스 환경하에서의 헬스케어 시스템에서의 보안 문제, 해결책 및 기법 (Security Issues, Challenges and Techniques for U-Healthcare System)

  • 양지수;김한규;김승민;김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.984-985
    • /
    • 2013
  • An integrated security mechanism is one of the key challenges in the open wireless network architecture because of the diversity of the wireless network in open wireless network and the unique security mechanism used in each one of these networks. In the paper we analysed some elements to guarantee security and privacy preserving in distributed IT applications which provide some kind of support to complex medical domains.

  • PDF

안전한 NFC 서비스 활용 활성화를 위한 보안 위협 대책 마련을 위한 고찰 (The Study for Establishment of Security Threat Measures for Secure NFC Service)

  • 최희식;조양현
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.219-228
    • /
    • 2018
  • The utilization of NFC has been continuously increasing due to the spread of smart phones and the development of short-range wireless communication networks. However, it has been suggested that stability and security of convenient NFC short-range wireless communications can be unstable and problematic. The unstable causes for NFC are the lack of security technologies for NFC, the controversy about personal information infringement, and the lack of social awareness on security breach against data settlement. NFC service can be conveniently used by simply touching other NFC devices and NFC tags through the NFC device. This thesis analyzes that NFC authentication technology, which is convenient for user are one of the unstable causes of security of NFC. This thesis suggest that ministry should research countermeasures and promote how users can use NFC safely. It also suggests that users should have awareness when they use payment and authentication service through NFC to prevent from security threat.

신뢰도 평가를 통한 무선 센서 네트워크에서의 거짓 데이타 제거 (Trust-Based Filtering of False Data in Wireless Sensor Networks)

  • 허준범;이윤호;윤현수
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권1호
    • /
    • pp.76-90
    • /
    • 2008
  • 무선 센서 네트워크는 자연재해 탐지 시스템, 의료 시스템, 그리고 군사적 응용분야 등의 다양한 환경에서 유용한 해결책을 제시하고 있다. 그러나 센서 네트워크의 구성 환경 및 자원 제약적인 본질적인 특성으로 인해 기존의 전통적인 보안기법을 그대로 센서 네트워크에 적용하기에는 무리가 있다. 특히 네트워크를 구성하는 센서 노드들은 제한된 배터리를 사용하기 때문에 센서 네트워크에 거짓 데이타가 유입되는 경우 서비스 거부 뿐만 아니라 센서 노드의 제한된 에너지를 소모시키는 등의 심각한 문제를 야기할 수 있다. 기존의 전통적인 암호학적 인증 및 키 관리 방법 등을 통한 보안 기법은 센서 네트워크의 물리적인 노드탈취 공격에 대한 취약성으로 인해서 이러한 거짓 데이타 판별에 대한 해결책을 제시하지 못한다. 본 논문에서는 기존의 평판기반 기법과 달리 각 센서 노드의 위치에 따른 센싱 결과에 대해 일관성 등의 요소를 기반으로 신뢰도를 평가하고, 거짓 데이타를 주입하는 내부 공격에 대한 보안기법을 제안한다. 분석 결과에 따르면 제안한 신뢰도 평가 기반의 데이타 통합 기법은 기존의 중앙값보다 견고한 데이타 통합 결과를 보여준다.

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Quality of Service using Min-Max Data Size Scheduling in Wireless Sensor Networks

  • Revathi, A.;Santhi, S.G.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.327-333
    • /
    • 2022
  • Wireless Sensor Networks (WSNs) plays an important role in our everyday life. WSN is distributed in all the places. Nowadays WSN devices are developing our world as smart and easy to access and user-friendly. The sensor is connected to all the resources based on the uses of devices and the environment [1]. In WSN, Quality of Service is based on time synchronization and scheduling. Scheduling is important in WSN. The schedule is based on time synchronization. Min-Max data size scheduling is used in this proposed work. It is used to reduce the Delay & Energy. In this proposed work, Two-hop neighboring node is used to reduce energy consumption. Data Scheduling is used to identify the shortest path and transmit the data based on weightage. The data size is identified by three size of measurement Min, Max and Medium. The data transmission is based on time, energy, delivery, etc., the data are sent through the first level shortest path, then the data size medium, the second level shortest path is used to send the data, then the data size is small, it should be sent through the third level shortest path.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.