• Title/Summary/Keyword: Wireless multimedia sensor networks

Search Result 131, Processing Time 0.019 seconds

Efficient Context-Aware Scheme for Sensor Network in Ubiquitous Devices

  • Shim, Jong-Ik;Sho, Su-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1778-1786
    • /
    • 2009
  • Many sensor network applications have been developed for smart home, disaster management, and a wide range of other applications. These applications, however, generally assume a fixed base station as well as fixed sensor nodes. Previous research on sensor networks mainly focused on efficient transmission of data from sensors to fixed sink nodes. Recently there has been active research on mobile sink nodes, sink mobility is one of the most comprehensive trends for information gathering in sensor networks, but the research of an environment where both fixed sink nodes and mobile sinks are present at the same time is rather scarce. This paper proposes a scheme for context-aware by ubiquitous devices with the sink functionality added through fixed sinks under a previously-built, cluster-based multi-hop sensor network environment. To this end, clustering of mobile devices were done based on the fixed sinks of a previously-built sensor network, and by using appropriate fixed sinks, context gathering was made possible. By mathematical comparison with TTDD routing protocol, which was proposed for mobile sinks, it was confirmed that performance increases by average 50% in energy with the number of mobile sinks, and with the number of movements by mobile devices.

  • PDF

An Optimized Node-Disjoint Multi-path Routing Protocol for Multimedia Data Transmission over Wireless Sensor Network (무선 센서 네트워크에서의 멀티미디어 데이터 전송을 위한 최적의 노드 비 겹침 다중경로 탐색 프로토콜)

  • Jung, Sung-Rok;Lee, Jeong-Hoon;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1021-1033
    • /
    • 2008
  • In recent years, the growing interest in wireless sensor network has resulted in thousands of publications. Most of this research is concerned with delivering raw data such as temperature, pressure, or humidity. Recently, the focus of sensor network paradigm is changing for delivering multimedia contents. However, most existing routing protocols are not very practical for transmitting multimedia contents in resource constrained sensor networks. In this paper, we propose an optimized node-disjoint multi-path routing protocol for throughput enhancement and load balancing. We focused on how to allocate traffic to independent multiple end-to-end routes. Decentralized transmission using our node-disjoint multi-path routing scheme results in bandwidth aggregation and throughput enhancement. In addition, our scheme provides ways to remove link-joint routes for decreasing routing overhead.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.

A High Performance Transmission Method for Massively Delivering Multimedia Data in WMSN (무선 멀티미디어 센서 네트워크(WMSN) 환경에서 멀티미디어 데이터 전송을 위한 대용량 전송 기법에 대한 연구)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.903-917
    • /
    • 2012
  • For transmitting sensed data, wireless sensor networks have been developed and researched for the improvement of energy efficiency, hence, many MAC protocols in WSN employ the duty cycle mechanism. Since the progressed development of the low power transceiver and processor let the high energy efficiency come true, the delivery of the multimedia data which occurs in area of sensor work should be needed to provide supplemental information. In this paper, we design a new scheme for massive transmission of large multimedia data where the duty cycle is used in contention based MAC protocol, for WMSN. The proposed scheme can be applied into the previous duty cycle mechanism because it provides two operation between normal operation and massive transmission operation. Measuring the buffer status of sender and the condition of current radio channel can be criteria for the decision of the above two operations. This paper shows the results of the experiment by performing the simulation. The target protocol of the experiment is X-MAC which is contention based MAC protocol for WSN. And two approaches, both X-MAC which operates only duty cycle and X-MAC which operates combined massive transmission scheme, are used for the comparative experiment.

Wavelet Compression Technique for Efficient Image Transmission in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 이미지 전송을 위한 웨이블릿 압축 기법)

  • YoungWan Kwon;ChongMyung Park;JoaHyoung Lee;InBum Jung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.946-949
    • /
    • 2008
  • 저가형 이미지 센서와 무선 센서 네트워크의 하드웨어 성능 향상으로 인해 WMSN(Wireless Multimedia Sensor Networks) 기술이 주목받고 있다. WMSN은 기존의 무선 센서 네트워크 기술에 멀티미디어 정보를 센싱하고 처리하는 기반기술을 포함한다. 멀티미디어 컨텐츠는 많은 데이터양을 가지므로 이를 처리하기 위해서는 많은 계산량과 데이터 전송량을 필요로 하게 된다. 저사양의 센서 노드에서 이를 수용하기 위해서는 에너지 소모를 고려한 압축 기법 및 효율적인 전송에 대한 연구가 필요하다. 본 논문에서는 무선 센서 네트워크에서 이미지를 효율적으로 압축하고 전송하기 위하여 웨이블릿의 Resolution Scalability 특성을 이용한 4가지 움직임 보상/예측 기법을 제안하고, 압축 성능과 발생 패킷 수, 에너지 소모량을 비교하였다.

A Study on Environment Management System in Tunnel using Wireless Sensor Networks (무선 센서 네트워크를 이용한 터널 내 환경 관리 시스템에 관한 연구)

  • Joo, Yang-Ick;Kim, Jae-Wan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1196-1203
    • /
    • 2013
  • In general, the cost of transceiver for wireless network configuration is more expensive than that for wired network. However, in case of environmental management system in a tunnel, the cost can be minimized by adopting low rate tranceiver because the amount of the exchanged data for tunnel monitoring is very small. When the obtained data from sensor node is sent directly to the corresponding command node, there is no need to consider routing problem of the data transfer. However in this case, sensor nodes are required to be implemented with high power transmitter and experience high energy consumption. To tackle this problem, relay nodes can be used to transfer the data of tunnel monitoring, and suitable routing protocols for selecting optimum path are needed. Therefore, in this paper, we propose a routing algorithm and a self-configuration protocol for environment management system in tunnel.

TPC-BS: Transmission Power Control based on Binary Search in the Wireless Sensor Networks (TPC-BS: 센서 네트워크에서 이진검색 방법을 이용한 빠른 전송전력 결정 방법)

  • Oh, Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1420-1430
    • /
    • 2011
  • This paper proposes a new method to optimize energy consumption in a wireless modem by setting up a transmission power value according to the distance between nodes and circumstance in the MAC layer of IEEE 802.15.4. The proposed method can dynamically find an optimal transmission power range using the binary search scheme and minimize overhead caused by multiple message transmissions when determining the optimal transmission power. The determined transmission power is used for transmitting data packets and can be modified dynamically depending on the changes in a network environment when exchanging data packets and acknowledgement signals. The results of the simulations show 30% reduction in energy consumption while 2.5 times increase in data transmission rate per unit of energy comparing with IEEE 802.15.4 standard.