• Title/Summary/Keyword: Wireless local area network (WLAN)

Search Result 217, Processing Time 0.021 seconds

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.

Performance Improvement Scheme based on Proactive Transmission for Reliable Multicast in Wireless LANs (무선 랜에서 신뢰성 있는 멀티캐스트를 위한 능동적 전송 기반의 성능 향상 방법)

  • Kim, Sun-Myeng;Kim, Si-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.16-24
    • /
    • 2011
  • The IEEE 802.11 wireless LAN (Local Area Network) is widely used for wireless access due to its easy deployment and low cost. Multicast in wireless LANs is very useful for transmitting data to multiple receivers compared to unicast to each receiver. In the IEEE 802.11 wireless LAN, multicast transmissions are unreliable since multicast data packets are transmitted without any feedback from receivers. Recently, various protocols have been proposed to enhance the reliability of multicast transmissions. They still have serious problems in reliability and efficiency due to the excessive control overhead by the use of a large number of control packets in the error recovery process, and due to a large number of retransmissions to satisfy all receivers. In this paper, we propose an effective scheme called PTRM(Proactive Transmission based Reliable Multicast). The proposed scheme uses a block erasure code to generate parity packets and to reduce the impact of independent packet error among receivers. After generating parity packets, the PTRM transmits data packets as many as receivers need to recover error, and then requests feedback from them. The simulation results show that the proposed scheme provides reliable multicast while minimizing the feedback overhead.

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

A Novel OFDM Integer Frequency Offset Estimation Scheme Using Differential Combining (차동 결합을 이용한 새로운 OFDM 정수 주차수 옵셋 추정 기법)

  • Ahn, Sang-Ho;Chong, Da-Hae;Han, Tae-Hee;Kim, Sang-Hyo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.627-632
    • /
    • 2008
  • The timing offset is one of the main error sources in estimating the frequency offset in orthogonal frequency division multiplexing (OFDM) systems. Although some works have been done to mitigate the influence of the timing offset on the frequency offset estimation, most of the investigations require the knowledge of the timing offset range, which is not generally available in practical systems. In this paper, we propose a new frequency offset estimation scheme using differential combining between two successive correlation samples, which does not require the knowledge of the timing offset range, and thus, is robust to the timing offset variation. The simulation results show that the proposed scheme is not only robust to the timing offset variation, but also generally performs better than the conventional scheme on the average, in the case of the timing offset range being not known exactly.

Isolation Enhancement of Internal MIMO Antenna

  • Jung, Pil Hyun;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • In this paper, we proposed and evaluated the performance of an internal MIMO (Multiple Input Multiple Output) antenna for multiband operations including LTE (Long Term Evolution) 700/2300/2500. And to enhance the isolation characteristic, a parasitic element is designed and applied. The proposed single antenna has a volume of $60mm(W){\times}38mm(L)$, and the ground plane is $60mm(W){\times}100mm(L)$. The parasitic element used for enhancing the isolation of the antenna was designed with a copper on FR4 sized $60mm(W){\times}20mm(L){\times}1.6mm(H)$, and the pattern size is $60mm(W){\times}15mm(L)$. Simulated and measured results showed that LTE 700/2300/2500, DCS (Digital Cellular Service: 1710-1880MHz), K-PCS (Korea-Personal Communication Service: 1750-1870MHz), US-PCS (US-Personal Communication Service: 1850-1990MHz), WCDMA (Wideband Code Division Multiple Access: 1920-2170MHz), Wibro (2300-2390MHz), Bluetooth (2400-2483MHz), WLAN (Wireless Local Area Network: 2400-2483.5MHz), US-WiMAX (US-World interoperability for Microwave Access: 2400-2590MHz) frequency bands were covered with $S_{11}$ values less than -6dB (VSWR < 3). Simulated and measured results on $S_{21}$ at 730MHz for the firstly designed MIMO antenna showed -5.50dB and -5.65dB, respectively. When with the parasitic element at the separated ground plane to enhance the isolation performance, -10.33dB and -12.90dB are obtained for the simulation and measurement, so the enhanced isolation performance at lower frequency band (617-867MHz) is confirmed.

L-shaped Slot Antenna for WLAN MIMO Application (무선랜 MIMO용 L-형 슬롯 안테나)

  • Song, Won-Ho;Nam, Ju-Yeol;Lee, Ki-Yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2016
  • In the present study, a dual-band multiple-input-multiple-output (MIMO) antenna covering WLAN frequency bands of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz) is newly presented to avoid use of decoupling structure for increasing isolation. The antenna consists of two L-shaped slots with n-shaped slots etched on the floating ground plane surrounded by open ended L-shaped slots which are placed in the left and right corner of PCB respectively. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm, and size of $50{\times}50mm2$. It has been observed that the measured impedance bandwidths ($S_{11}{\leq}-10dB$) are 0.3 GHz (2.28 ~ 2.58 GHz) in 2.4 GHz frequency band and 0.89 GHz (5.11 ~ 6 GHz) in 5 GHz frequency band respectively. In addition, It has been observed that the whole efficiency are more than 80 % in the whole operating frequency band and envelope correlation coefficient of the antenna is less than 0.05 as a very small value in spite of nothing of the decoupling structure.

A Study on Polynomial Pre-Distortion Technique Using PAPR Reduction Method in the Next Generation Mobile Communication System (차세대 이동통신 시스템에 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Kim, Wan-Tae;Park, Ki-Sik;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • Recently, the NG(Next Generation) system is studied for supporting convergence of various services and multi mode of single terminal. And a demand of user for taking the various services is getting increased, for supporting these services, many systems being able to transmit a large message have been appeared. In the NG system, it has to be supporting the CDMA and WCDMA besides the tele communication systems using OFDM method with single terminal An intergrated system can be improved with adopting of SoC technique. For adopting SoC technique on the intergrated terminal, we have to solve the non linear problem of HPA(High Power Amplifier). Nonlinear characteristic of HPA distorts both amplitude and phase of transmit signal, this distortion cause deep adjacent channel interference. We adopt a polynomial pre-distortion technique for this problem. In this paper, a noble modem design for NG mobile communication service and a method using polynomial pre-distorter with PAPR technique for counterbalancing nonlinear characteristic of the HPA are proposed.