• 제목/요약/키워드: Wireless charged sensor

검색결과 11건 처리시간 0.028초

Demand-based charging strategy for wireless rechargeable sensor networks

  • Dong, Ying;Wang, Yuhou;Li, Shiyuan;Cui, Mengyao;Wu, Hao
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.326-336
    • /
    • 2019
  • A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.

An Efficient Energy Charging Scheme for Wireless Sensor Networks Using a Mobile Sink Capable of Wireless Power Transmission

  • Park, Kyoung nam;Yoon, Ikjune
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose the algorithms which determine 1) the efficient anchor-node visiting route of mobile sink in terms of energy supply and 2) the efficient energy amount to be charged to each anchor node, by using the information of each anchor node and the mobile sink. Wireless sensor networks (WSNs) using mobile sinks can be deployed in more challenging environments such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolong the network lifetime. Most mobile sinks visit only some anchor nodes which store the data collected by the nearby sensor nodes because of their limited energy. The problem of these schemes is that the lifetime of the anchor nodes can be shorten due to the increased energy consumption, which rapidly reduces the overall lifetime of WSN. This study utilizes a mobile sink capable of wireless power transmission to solve this problem, so a mobile sink can gather data from anchor nodes while charging energy to them. Through the performance verification, it is confirmed that the number of blackout nodes and the amount of collected data are greatly improved regardless of the size of the network.

에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜 (A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks)

  • 심규욱;박형근
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

무배터리 무선 센서 네트워크에서의 데이터 집적 스케줄링에 관한 새로운 라우팅 구조 방법 (A Novel Routing Structure Method For Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks)

  • ;김문성;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.94-97
    • /
    • 2022
  • The emerging energy harvesting technology, which has been successfully integrated into Wireless Sensor Networks, enables sensor batteries to be charged using renewable energy sources. In the meantime, the problem of Minimum Latency Aggregation Scheduling (MLAS) in battery-powered WSNs has been well studied. However, because sensors have limited energy harvesting capabilities, captured energy is limited and varies greatly between nodes. As a result, all previous MLAS algorithms are incompatible with Battery-Free Wireless Sensor Networks (BF-WSNs). We investigate the MLAS problem in BF-WSNs in this paper. To make the best use of the harvested energy, we build an aggregation tree that leverages the energy harvesting rates of the sensor nodes with an intuitive explanation. The aggregation tree, which determines sender-receiver pairs for data transmission, is one of the two important phases to obtain a low data aggregation latency in the BF-WSNs.

컨베이어 진동을 이용한 IDE 적층 압전 캔틸레버 발전 소자의 무선 센서 응용 연구 (A Study on the Characteristics of Wireless Sensor Powered by IDE Embedded Piezoelectric Cantilever Generators Using Conveyor Vibration)

  • 김창일;이민선;조정호;백종후;장용호;최범진;손천명;서덕기;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.769-775
    • /
    • 2016
  • Characteristics of a wireless sensor powered by the IDE (interdigitated electrode) embedded piezoelectric cantilever generator were analyzed in order to evaluate its potential for use in wireless sensor applications. The IDE embedded piezoelectric cantilever was designed and fabricated to have a self-resonance frequency of 126 Hz and acceleration of 1.57 G, respectively, for the mechanical resonance with a practical conveyor system in a thermal-power plant. It produced maximum output power of 2.81 mW under the resistive load of $160{\Omega}$ at 126 Hz. The wireless sensor module is electrically connected to a rectifier capacitor with capacity of 0.68 farad and 3.8 V for power supply by the piezoelectric cantilever generator. The unloaded capacitor could be charged as a rate of approximately $365{\mu}V/s$ while the capacitor exhibited that of 0.997 mV/min. during communication under low duty cycle of 0.2%. Therefore, it is considered that the fabricated IDE embedded piezoelectric cantilever generator can be used for wireless sensor applications.

에너지 수집형 무선 센서 네트워크를 위한 에너지 적응형 데이터 압축 및 전송 범위 결정 기법 (Energy-Aware Data Compression and Transmission Range Control Scheme for Energy-Harvesting Wireless Sensor Networks)

  • 이준민;오엄지;노동건;윤익준
    • 대한임베디드공학회논문지
    • /
    • 제11권4호
    • /
    • pp.243-249
    • /
    • 2016
  • Energy-harvesting nodes in wireless sensor networks(WSNs) can be exhausted due to a heavy workload even though they can harvest energy from their environment. On contrast, they can sometimes fully charged, thus waste the harvested energy due to the limited battery-capacity. In order to utilize the harvested energy efficiently, we introduce a selective data compression and transmission range control scheme for energy-harvesting nodes. In this scheme, if the residual energy of a node is expected to run over the battery capacity, the node spends the surplus energy to exploit the data compression or the transmission range expansion; these operations can reduce the burden of intermediate nodes at the expanse of its own energy. Otherwise, the node performs only basic operations such as sensing or transmitting so as to avoid its blackout time. Simulation result verifies that the proposed scheme gathers more data with fewer number of blackout nodes than other schemes by consuming energy efficiently.

Prolonging Network Lifetime by Optimizing Actuators Deployment with Probabilistic Mutation Multi-layer Particle Swarm Optimization

  • Han, Yamin;Byun, Heejung;Zhang, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2959-2973
    • /
    • 2021
  • In wireless sensor and actuator networks (WSANs), the network lifetime is an important criterion to measure the performance of the WSAN system. Generally, the network lifetime is mainly affected by the energy of sensors. However, the energy of sensors is limited, and the batteries of sensors cannot be replaced and charged. So, it is crucial to make energy consumption efficient. WSAN introduces multiple actuators that can be regarded as multiple collectors to gather data from their respective surrounding sensors. But how to deploy actuators to reduce the energy consumption of sensors and increase the manageability of the network is an important challenge. This research optimizes actuators deployment by a proposed probabilistic mutation multi-layer particle swarm optimization algorithm to maximize the coverage of actuators to sensors and reduce the energy consumption of sensors. Simulation results show that this method is effective for improving the coverage rate and reducing the energy consumption.

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

센서 노드 배터리 충전을 위한 Solar Cell의 완충시간에 대한 연구 (A study on energy harvesting time of Solar Cell battery for Sensor node)

  • 최영숙;류정탁;김경기;김희철
    • 한국산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2011
  • 유비쿼터스 네트워크와 더불어 무선 센서 네트워크는 다양한 분야에 응용되고 있다. 무선 센서 네트워크의 노드들은 목표 지역에 비치되어 동작하게 되는데 그 공급원으로 대부분 배터리를 사용하고 있다. 배터리는 센서 네트워크의 응용에 제한된 에너지를 가짐으로써 교체나 충전 등의 어려움을 가진다. 따라서 센서노드의 수명을 연장시키기 위해 주변 환경으로부터의 에너지 하베스팅 기술 등이 연구 개발되고 있다. 특히 태양에너지는 다른 환경 에너지에 비하여 방대하고 짧은 시간에 많은 에너지를 얻을 수 있어 최근 널리 연구되어지고 있다. 본 연구에서는 Solar Cell을 이용하여 배터리 충전 및 센서노드를 구동하는 실험을 하고, 수집된 데이터와 배터리의 전압에 대한 분석을 통하여 센서노드를 구동하기 위해 필요한 배터리 충전시간과 센서노드 농작 가능성에 대하여 확인하였다.

태양 에너지 기반 무선 센서 네트워크에서 에너지와 링크 품질을 고려한 향상된 FEC 기법 (Advanced FEC Scheme Considering Energy and Link-Quality for Solar-Powered WSNs)

  • 길건욱;강민재;노동건
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권4호
    • /
    • pp.83-88
    • /
    • 2020
  • 태양 에너지 기반 무선 센서 네트워크(SP-WSN) 환경에서는 주기적으로 배터리가 충전되므로 에너지 소모를 최소화하기보다는 수집된 에너지의 효율적인 사용이 중요하다. 한편, 잘 알려진 것처럼 SP-WSN을 포함하여 모든 센서 네트워크들은 사용되는 센서 노드의 특성상 성능이 제한적이므로 노드 간의 통신 신뢰도가 낮을 수밖에 없다. 본 논문에서는 위의 특성들을 고려하여 SP-WSN에서 신뢰성 있는 통신을 할 수 있는 향상된 순방향 에러정정 기법(FEC) 기법을 제안한다. 제안 기법은 우선 1) 에너지 모델링을 통해 노드가 기본 동작 외에 여분으로 사용할 수 있는 에너지양을 계산하고, 이 에너지를 최대한 활용할 수 있는 에러 복구용 패리티의 크기를 결정한다. 동시에 2) 링크 품질 모델링을 통해 현재의 데이터 통신환경에서 에러 복구에 필요한 최적의 패리티도 계산한다. 최종적으로 3) 이 두 가지 패리티의 크기를 동시에 고려함으로써 노드의 정전시간을 줄이면서, 데이터 신뢰성을 증가시킬 수 있는 패리티 크기를 결정할 수 있다. 싱크에서 수집되는 데이터양과 정전되는 노드 수를 다른 기법들과 비교함으로써 성능검증을 수행하였다.