• Title/Summary/Keyword: Wireless body sensor system

Search Result 119, Processing Time 0.032 seconds

The Analysis of Transmission Power Control Model for Energy Efficiency in Body Sensor Systems (에너지 효율을 위한 인체 센서 시스템의 전송 전력 조절 모델 분석)

  • Hong, Jin-A;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In wireless body sensor system(WB-SNSs), unlike existing sensor network system, the size of device is small and amount of battery is considerably limited. And various channel environments can be made by link channel characteristic, human movements, sensor placements, transmission power control(TPC) algorithms and so on. In this paper, therefore we take diverse experiments with totally considerated environments to overcome these restrictions and to manage the energy efficiently and find the value of target received signal strength indicator(RSSI) based on diverse factors such as human movements, sensor placements, and TPC algorithms. And we conduct analysis in terms of energy consumption and packet delivery rate(PDR) based on the experimental results. Through these analysis, we compare and evaluate the efficiency according to setup values of Target RSSI and Target RSSI range suitable for wireless body sensor network system.

Ubiquitous Healthcare Monitoring and Measuring System based on Wireless Sensor Network (무선센서네트워크 기반의 u-헬스케어 모니터링 및 계측시스템)

  • Lee, Young-Dong;Lee, Dae-Seok;Walia, Gaurav;Bhardwaj, Sachin;Chung, Wan-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.821-822
    • /
    • 2006
  • Ubiquitous healthcare monitoring and measuring system based on wireless sensor network was implemented and tested. The system can measure the ECG and body temperature of patients or elderly persons and transfer the data wirelessly in ad-hoc network to remote base-station connected to doctor's PDA/PC or hospital server, using wireless sensor motes. The data obtained can be analyzed by doctors and care providers to monitor a health status of patient in real time environment. To prove the capabilities of the wireless sensor network platform for ubiquitous healthcare applications, the performance of our monitoring and measuring system was tested with positive results.

  • PDF

Implementation of Wireless Micro-Magnetic Detection System in the Conveyer Belt (컨베어 이송장치에서의 무선 미소자기감지 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2975-2981
    • /
    • 2014
  • Micro-magnetic detection system is used to detect small particles in an automatic transmission valve body, which signal noise and time-delay may occurs in process of signal transmitting and filtering. In this paper, we present the design and implement of a micro-magnetic detection system based on wireless sensor networks in conveyer belt. Micro-magnetic detection system consists of five modules which are magnetic sensor detector, signal processing unit, wireless sensor networks, system control unit and system monitoring unit. Our experimental results show that the proposed wireless micro-magnetic detection system improves both accuracy and time delay compared to the wired system; therefore, it may apply for wireless micro-magnetic detection system by analysis of packet reception rate.

The Implementation of Walking for a Humanoid Robot by ZMP measurement using Wireless Sensor Network (무선 센서 네트워크를 이용한 ZMP측정에 의한 휴머노이드 로봇의 걸음새 구현)

  • Lee, Bo-Hee;Seo, Kyu-Tae;Hwang, Byung-Hun;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.95-97
    • /
    • 2005
  • This paper deals with the implementation of walking for a humanoid robot by ZMP measurement using wireless sensor network. ZMP is measured by FSR sensors which are mounted at each corner of a sole. The wireless sensor network collects the sensor data according and exchanges robot information between host PC and a robot system. The master controller mounted on robot body receives trajectory data from the host PC via sensor network and drives the joint motor based on trajectory data. The time scheduler of the master controller controls the events at the ratio of 100ms. With this configuration, the walking of the humanoid robot KHR-1 could be realized successfully.

  • PDF

A Study on the Sensor Node Based Wireless Network Communication System for Efficient EEG Transmission (효율적인 EEG 전송을 위한 센서노드기반의 무선통신시스템에 관한 연구)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.791-796
    • /
    • 2013
  • Advent of the brain wave health care system is considered as an important issues in the industrial and research area in these days. It is necessary to detect EEG signals in real-time in order to support the medical emergency service for the epileptic or brain infarct patients. Since the efficient network support is an essential factor for the system, several topologies using sensor node based wireless body area network is suggested and simulated in this paper. Finally the Opnet simulation result is evaluated for the efficient topology of the body area network.

Design and Evaluation of Wireless Sensor Node Application for u-Healthcare (u-헬스케어를 위한 무선센서노드 어플리케이션 구현 및 성능 평가)

  • Lee, Dae-Seok;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.518-521
    • /
    • 2007
  • The functional wireless sensor node for u-healthcare application was developed. The developed sensor node can check the abnormality of ECG in some simple software in ROM of microprocess in the sensor node. The ECG signal is one of very important health signal form human body, and wavelike signal which is sampled as a sampling frequency between 100 and 400 Hz for digitalization, so the wireless data dor ECG signal is some heavy in Zigbee communication. Thus the sensor send the ECG signal to other sensor nodes or base station when it find abnormality in ECG signal is key technology to reduce the traffic between sensor nodes in wireless sensor network for u-healthcare, The sensor node does not need to transmit ECG data all time in wireless sensor network and to server. Using these sensor nodes, the healthcare system can dramatically reduce wireless data packet overload, the power consumption of battery in the sensor nodes and thus increase the reliability of the wireless system.

  • PDF

Development Brief of A Body Area Network for Ubiquitous Healthcare : An Introduction to Ubiquitous Biomedical Systems Development Center

  • Hong Joo-Hyun;Kim Nam-Jin;Cha Eun-Jong;Lee Tae-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.331-335
    • /
    • 2005
  • The fusion technology of small sensor and wireless communication was followed by various application examples of the embedded system, where the social infrastructural facilities and ecological environment were wirelessly monitored. In addition, this technology represents the primary application area being extended into the healthcare field. In this study, a body area network for ubiquitous healthcare is presented. More specifically this represents a wireless biomedical signal acquisition device characterized by small size, low power consumption, pre-processing and archiving capability. Using this device, a new method for monitoring vital signs and activity is created. A PDA-based wireless sensor network enables patients to be monitored during their daily living, without any constraints. Therefore, the proposed method can be used to develop Activities of Daily Living (ADL) monitoring devices for the elderly or movement impaired people. A medical center would be able to remotely monitor the current state of elderly people and support first-aid in emergency cases. In addition, this method will reduce medical costs in society, where the average life expectancy is increasing.

Remote Vital Sign Monitoring System Based on Wireless Sensor Network using Ad-Hoc Routing (애드혹 라우팅을 이용한 무선센서네트워크 기반의 원격 생체신호 모니터링 시스템)

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients, was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons and transfer his/ her health status wirelessly in Ad-hoc network, to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

  • PDF

Decision method for rule-based physical activity status using rough sets (러프집합을 이용한 규칙기반 신체활동상태 결정방법)

  • Lee, Young-Dong;Son, Chang-Sik;Chung, Wan-Young;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.432-440
    • /
    • 2009
  • This paper presents an accelerometer based system for physical activity decision that are capable of recognizing three different types of physical activities, i.e., standing, walking and running, using by rough sets. To collect physical acceleration data, we developed the body sensor node which consists of two custom boards for physical activity monitoring applications, a wireless sensor node and an accelerometer sensor module. The physical activity decision is based on the acceleration data collected from body sensor node attached on the user's chest. We proposed a method to classify physical activities using rough sets which can be generated rules as attributes of the preprocessed data and by constructing a new decision table, rules reduction. Our experimental results have successfully validated that performance of the rule patterns after removing the redundant attribute values are better and exactly same compare with before.

Wireless RF Sensor Structure for Non-Contact Vital Sign Monitoring

  • Kim, Sang-Gyu;Yun, Gi-Ho;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes a compact and novel wireless vital sign sensor at 2.4 GHz that can detect heartbeat and respiration signals. The oscillator circuit incorporates a planar resonator, which functions as a series feedback element as well as a near-field radiator. The periodic movement of a human body during aerobic exercise could cause an input impedance variation of the radiator within near-field range. This variation results in a corresponding change in the oscillation frequency and this change has been utilized for the sensing of human vital signs. In addition, a surface acoustic wave (SAW) filter and power detector have been used to increase the system sensitivity and to transform the frequency variation into a voltage waveform. The experimental results show that the proposed sensor placed 20 mm away from a human body can detect the vital signs very accurately.