• Title/Summary/Keyword: Wireless body sensor system

Search Result 119, Processing Time 0.027 seconds

Design and implement of patch type wireless skin temperature measuring system (패치형 무선 피부 온도 측정 시스템의 설계 및 구현)

  • Woo, S.H.;Park, S.Y.;Din, Z. Mohy Ud;Won, C.H.;Lee, J.H.;Park, H.J.;Lee, J.W.;Hong, Y.G.;Suh, J.H.;Youm, Y.G.;Cho, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.350-360
    • /
    • 2008
  • In every large hospital, nurses must perform simple repetitive tasks such as measuring body temperature. Such tedious work reduces nurses' motivation to provide quality medical care, which is an important element of the medical services provided by a hospital. If a device were available to measure body temperature, nurses could focus on the more important aspects of providing quality medical care to the patients. However, body temperature is generally measured from the throat, anus, tympanum or armpit, where it is difficult to affix a patch type device. In addition, general body temperature measuring points shows moving artifact error; therefore, it is not good point to continually measure the temperature. In this paper, a patch type skin temperature measuring system was developed. To appropriately measure the skin temperature, a thermal transducer was implemented with a thin (0.5 mm) temperature sensor. The system is small and thin ($H6.6{\sim}5.3{\times}L35{\times}W24\;mm$), and weighs only 5 g including a battery, case and circuit; therefore, it is small and light enough to function as a patch type device. Moreover, the system worked for 5 days. To investigate differences between the experimental and conventional thermometer, simple clinical experiments were performed with 17 volunteers, and the result showed some correlation between the implemented system and conventional thermometer (Correlation coefficient = 0.647, P<0.1).

The Method for 3-D Localization of Implantable Miniaturized Telemetry Module by Analysis of Nonlinear Differential Equations (비선형 연립방정식에 의한 체내 삽입형 초소형 텔레메트리 모듈의 3차원 위치추적 방법)

  • Park, J.C.;Nam, H.W.;Park, H.J.;Song, B.S.;Won, C.H.;Lee, S.H.;Choi, H.C.;Cho, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.249-257
    • /
    • 2003
  • The bio-telemetry technologies, that use the wireless miniaturized telemetry module implanted in the human body and transmits several biomedical signal from inside to outside of the body, have been expected to solve the problem such as the patient's inconvenience and the limit for diagnosis. In the case of transceiver system using the wireless RF transmission method, the method of three-dimensional localization for implantable miniaturized telemetry module is necessary to detect the exact position of disease. A new method for three-dimensional localization using small loop antenna in the implantable miniaturized telemetry module was proposed in this paper. We proposed a method that can accurately determine the position of telemetry module by analyzing the differences in the strength of signal, which is received at each of the small size RF receiver array installed on the body surface.

Development of the Training System for Equilibrium Sense Using the Unstable Platform (불안정판을 이용한 평형감각 훈련시스템 개발)

  • Piao, Yong-Jun;Yu, Mi;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, we propose a new training system for the improvement of equilibrium sense using unstable platform. The equilibrium sense, which provides orientation with respect to gravity, is important to integrate the vision, somatosensory and vestibular function to maintain the equilibrium sense of the human body. In order to improve the equilibrium sense, we developed the software program such as a block game, pingpong game using Visual C++. These training system for the equilibrium sense consists of unstable platform, computer interface and software program. The unstable platform was a simple structure of elliptical-type which included tilt sensor, wireless RF module and the device of power supply. To evaluate the effect of balance training, we measured and evaluated the parameters as the moving time to the target, duration to maintain cursor in the target of screen and the error between sine curve and acquired data. As a results, the moving time to the target and duration to maintain cursor in the target was improved through the repeating training of equilibrium sense. It was concluded that this system was reliable in the evaluation of equilibrium sense. This system might be applied to clinical use as an effective balance training system.

Development of Mobile u-Healthcare System in WSN (무선센서네트워크 환경의 모바일 u-헬스케어 시스템 개발)

  • Lee, Seung-Chul;Chung, Wan-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.338-346
    • /
    • 2012
  • Wireless sensor network (WSN) technology provides a variety of medical and healthcare solutions to assist detection and communication of body conditions. However, data reliability inside WSN might be influenced to healthcare routing protocol due to limited hardware resources of computer, storage, and communication bandwidth. For this reason, we have conducted various wireless communication experiments between nodes using parameters such as RF strength, battery status, and deployment status to get a optimal performance of mobile healthcare routing protocol. This experiment may also extend the life time of the nodes. Performance analysis is done to obtain some important parameters in terms of distance and reception rate between the nodes. Our experiment results show optimal distance between nodes according to battery status and RF strength, or deployment status and RF strength. The packet reception rate according to deployment status and RF strength of nodes was also checked. Based on this performance evaluation, the optimized sensor node battery and deployment in the developed our mobile healthcare routing protocol were proposed.

Development of Wireless Healthcare System for Emergency Treatment (응급상황을 대비한 무선의료관리시스템 개발)

  • Park, Sung-Chul;Moon, Byung-Hyun;Lim, Byung-Hyun;Hwang, Bum-Suk;Choi, Sang-Min
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.125-130
    • /
    • 2009
  • Today, the handicapped or old people require continuous care, but there are a lot of practical difficulties. In this paper, the system measuring health conditions of the handicapped or old people (pulse and temperature) is developed. If urgent health conditions occur, measurement values are delivered to doctors or close family members using SMS (Short Message Service) of cellular phone. In the developed system, Pulse rate is measured by sensing bloodstream using high luminance LED and CdS illumination sensors. Body temperature is also measured by contactless temperature sensor. Also, the measured values are transmitted to a server computer using Zigbee communications. Also, the measured values the average of measurements and the time are saved. The wireless healthcare system is designed to help the emergency for the handicapped and old people by using SMS.

CardioSentinal: A 24-hour Heart Care and Monitoring System

  • Gao, Min;Zhang, Qian;Ni, Lionel;Liu, Yunhuai;Tang, Xiaoxi
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.67-78
    • /
    • 2012
  • People are willing to spend more for their health. Traditional medical services are hospital-centric and patients obtain their treatments mainly at the clinics or hospitals. As people age, more medical services are needed to exceed the potentials of this hospital-centric service model. In this paper, we present the design and implementation of CardioSentinal, a 24-hour heart care and monitoring system. CardioSentinal is designed for in-home and daily medical services. It mainly focuses on the outpatients and elderly. CardioSentinal is an interdisciplinary system that integrates recent advances in many fields such as bio-sensors, small-range wireless communications, pervasive computing, cellular networks and modern data centers. We conducted numerous clinic trials for CardioSentinal. Experimental results show that the sensitivity and accuracy are quite high. It is not as good as the professional measurements in hospital due to harsh environments but the system provides valuable information for heart diseases with low-cost and extreme convenience. Some early experiences and lessons in the work will also be reported.

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

Mobile Remote Healthcare in Ubiquitous Computing Environments (유비쿼터스 환경에서 모바일을 이용한 원격 헬스케어)

  • Kang, Eun-Young;Im, Yong-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.55-61
    • /
    • 2008
  • In this paper, we proposed a multi-agent based healthcare system (MAHS) which is the combination of medical sensor module and wireless communication technology. This MAHS provides wide services to mobile telemedicine, patient monitoring, emergency management, doctor's diagnosis and prescription, patients and doctors, information exchange between hospital workers in a long distance. Also, MAHS is connected to Body Area Network (BAN) and a doctor and hospital workers. In addition, we designed and implemented extended JADE based MAHS that reduces hospital server's burden. Agents gather, integrate, and deliver the collected patient's information from sensor, and provide presentation in healthcare environment. Proposed MAHS has advantage that can handle urgent situation in the far away area from hospital like Islands through PDA and mobile device. In addition, by monitoring condition of patient (old man) in a real time base, it shortens time and expense and supports medical service efficiently.

  • PDF

Development of Wireless Real-Time Gas Detector System for Chemical Protection Performance Test of Personal Protective Equipment (화생방 보호의 성능평가를 위한 무선 실시간 가스 검출기 개발)

  • Kah, Dong-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • Man-In-Simulant Test(MIST) provides a test method to evaluate chemical protective equipments such as protective garments, gloves, footwear and gas mask. The MIST chamber is built to control concentration of chemical vapor that has a activity space for two persons. Non-toxic methyl-salicylate(MeS) is used to simulate chemical agent vapor. We carried out to measure inward leakage MeS vapors by using passive adsorbent dosimeter(PAD) which are placed on the skin at specific locations of the body while man is activity according to the standard procedure in MIST chamber. But more time is required for PADs and there is concern of contamination in PADs by recovering after experiment. Therefore detector for measuring in real time is necessary. In order to analyze in real time the contamination of the personal protective equipment inside the chemical environment, we have developed a wireless real-time gas detector. The detector consists of 8 gas-sensors and 1 control-board. The control-board includes a CPU for processing a signal, a power supply unit for biasing the sensor and Bluetooth-chipset for transmission of signals to external PC. All signals from gas-sensors are converted into digital signals simultaneously in the control-board. These digital signals are stored in external PC via Bluetooth wireless communication. The experiment is performed by using protective equipment worn on manikin. The detector is mounted inside protective equipment which is capable of providing a real-time monitoring inward leakage MeS vapor. Developed detector is demonstrated the feasibility as real-time detector for MIST.