• Title/Summary/Keyword: Wireless base station

Search Result 575, Processing Time 0.026 seconds

Performance Evaluation of TCP over Wireless Links (무선 링크에서의 TCP 성능 평가)

  • Park, Jin-Young;Chae, Ki-Joon
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.160-174
    • /
    • 2000
  • Nowadays, most widely used transport protocol, TCP is tuned to perform well in traditional networks where packet losses occur mostly because of congestion. TCP performs reliable end-to-end packet transmission under the assumption of low packet error rate. However, networks with wireless links suffer from significant losses due to high error rate and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in inefficient use of network bandwidth and degraded end-to-end performance in that system. To solve this problem, several methods have been proposed. In this paper, we analyse and compare these methods and propose appropriate model for improving TCP performance in the network with wireless links. This model uses TCP selective acknowledgement (SACK) option between TCP ends, and also uses caching method at the base station. Our simulation results show that using TCP SACK option with base station caching significantly reduces unnecessary duplicate retransmissions and recover packet losses effectively.

  • PDF

On the Security of Hierarchical Wireless Sensor Networks (계층적 무선 센서 네트워크에서의 키관리 메커니즘)

  • Hamid, Md. Abdul;Hong, Choong-Seon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.23-32
    • /
    • 2007
  • We propose a group-based security scheme for hierarchical wireless sensor networks. We model the network for secure routing with 3-tier sensor network comprised of three types of nodes: Base Station, Group Dominator and ordinary Sensor Nodes. Group-based deployment is performed using Gaussian (normal) distribution and show that more than 85% network connectivity can be achieved with the proposed model. The small groups with pre-shared secrets form the secure groups where group dominators form the backbone of the entire network. The scheme is devised for dealing with sensory data aggregated by groups of collocated sensors; i.e., local sensed data are collected by the dominating nodes and sent an aggregated packet to the base station via other group dominators. The scheme is shown to be light-weight, and it offers a stronger defense against node capture attacks. Analysis and simulation results are presented to defend our proposal. Analysis shows that robustness can significantly be improved by increasing the deployment density using both the dominating and/or ordinary sensor nodes.

A Study on Frequency Coordination between Fixed Wireless System and Mobile Base Station in Urban or Sub-urban Area (도심 또는 부도심에서 고정무선시스템과 이동기지국 간의 주파수 조정에 대한 연구)

  • Suh, Kyoung-Whoan;Park, Young-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.41-49
    • /
    • 2017
  • Theoretical modelling and computational results for frequency coordination are presented over mobile base station and fixed wireless systems in urban or sub-urban area. Computational results with key parameters needed for interference analysis are performed and discussed in terms of system characteristics, propagation model, protection ratio, frequency dependent rejection, and discrimination angle with signal-interference plane. Based upon minimum coupling loss methodology, calculated interference powers of victim receiver for assumed system parameters are compared with maximum allowable interference power derived from protection ratio as functions of discrimination angle and distance including height-gain model in urban or sub-urban area. The proposed method is applicable for technical analysis on co-existence or interoperability for the various wireless systems, mandatory for frequency coordination or reallocation process.

A Decision Scheme of Amount of Required Resources for Adaptive Resource Reuse in Wireless Multi-hop Systems (무선 멀티홉 시스템에서 적응적 자원 재사용을 위한 요구 자원량 결정 기법)

  • Bae, Byung-Joo;Shin, Bong-Jhin;Hong, Dae-Hyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.229-234
    • /
    • 2009
  • In this paper, we propose a decision scheme of amount of required resources in wireless multi-hop systems which can reuse radio resources adaptively among relay stations (RSs). Base stations (BSs) can allocate resources dynamically based on amount of required resources of each RS. Moreover using resource reuse with this allocation method can increase amount of available resources in multi-hop systems. Generally, BSs allocate same amount of resources for RSs which share and reuses same resources for each other. Since amount of required resources are different among these RSs, a decision scheme of a specific value which can represent various required resources of RSs is needed. We propose this scheme which can decide the representative value of required resources of RSs adaptively based on the amount of required resources and the buffer state of each RS. Our simulation results show that the proposed scheme can increase performance of a multi-hop system. System capacity with the proposed adaptive scheme is increased by twice as large as one with a fixed representation value.

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

Probability Inference Heuristic based Non-Periodic Transmission for the Wireless Sensor Network (무선센서네트워크를 위한 확률추론 휴리스틱기반 비주기적 전송)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1689-1695
    • /
    • 2008
  • The development of low-power wireless communication and low-cost multi-functional smart sensor has enabled the sensor network that can perceive the status information in remote distance. Sensor nodes are sending the collected data to the node in the base station through temporary communication path using the low-cost RF communication module. Sensor nodes get the energy supply from small batteries, however, they are installed in the locations that are not easy to replace batteries, in general, so it is necessary to minimize the average power consumption of the sensor nodes. It is known that the RF modules used for wireless communication are consuming 20-60% of the total power for sensor nodes. This study suggests the probability inference heuristic based non-periodic transmission to send the collected information to the base station node, when the calculated value by probability is bigger than an optional random value, adapting real-time to the variation characteristics of sensing datain order to improve the energy consumption used in the transmission of sensed data. In this transmission method suggested, transmitting is decided after evaluation of the data sensed by the probability inference heuristic algorithm and the directly sensed data, and the coefficient that is needed for its algorithm is decided through the reappearance rate of the algorithm verification data.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

A Scheme of Supporting a Soft Handoff for IEEE 802.16e (IEEE 802.16e에서 소프트 핸드오프 지원 방안)

  • Han Jong soo;Park Ju hee;Lee Joon hyuk;Yun Chan young;Oh Young hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1309-1318
    • /
    • 2004
  • The rapid growth of the mobile Internet has enabled its application area to expand, and its users want services that require more bandwidth for multimedia services. There are limits to support the various multimedia service to mobile station provided by existing mobile communications. The wireless MAN called the IEEE 802.16 Broadband Wireless Access systems which the IEEE 802.11 wireless LAN is similar to wireline Internet service being able to supper a various contents is used and is designed to consider a handoff is studying. Especially, TG(Task Group)e of IEEE 802.16 is in progress discussion to support a handoff to higher layer using BS(Base Station) or unit of sector, to UC. Yet a scheme is not detail. This thesis proposes the network model for IEEE 802.16e to support a soft handoff between BSs to use a mobile communication network called cdma2000 Ix EV-DO network. The proposed network model supports soft handoff to add a management skill in MA of each BS for MC(Mobility Controller). The proposed network model has merits that is able to apply existing systems as it is and that is able to use a various multimedia service, when using a wireless Internet.

Modeling and Analysis of Load-Balancing Based on Base-Station CoMP with Guaranteed QoS

  • Feng, Lei;Li, WenJing;Yin, Mengjun;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2982-3003
    • /
    • 2014
  • With the explosive deployment of the wireless communications technology, the increased QoS requirement has sparked keen interest in network planning and optimization. As the major players in wireless network optimization, the BS's resource utilization and mobile user's QoS can be improved a lot by the load-balancing technology. In this paper, we propose a load-balancing strategy that uses Coordinated Multiple Points (CoMP) technology among the Base Stations (BS) to effectively extend network coverage and increase edge users signal quality. To use universally, different patterns of load-balancing based on CoMP are modeled and discussed. We define two QoS metrics to be guaranteed during CoMP load balancing: call blocking rate and efficient throughput. The closed-form expressions for these two QoS metrics are derived. The load-balancing capacity and QoS performances with different CoMP patterns are evaluated and analyzed in low-dense and high-dense traffic system. The numerical results present the reasonable CoMP load balancing pattern choice with guaranteed QoS in each system.

Delay Tolerant Information Dissemination via Coded Cooperative Data Exchange

  • Tajbakhsh, Shahriar Etemadi;Sadeghi, Parastoo
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.133-144
    • /
    • 2015
  • In this paper, we introduce a system and a set of algorithms for disseminating popular content to a large group of wireless clients spread over a wide area. This area is partitioned into multiple cells and there is a base station in each cell which is able to broadcast to the clients within its radio coverage. Dissemination of information in the proposed system is hybrid in nature: Each base station broadcasts a fraction of information in the form of random linear combinations of data blocks. Then the clients cooperate by exchanging packets to obtain their desired messages while they are moving arbitrarily over the area. In this paper, fundamental trade-offs between the average information delivery completion time at the clients and different parameters of the system such as bandwidth usage by the base stations, average energy consumption by the clients and the popularity of the spread information are studied. Moreover different heuristic algorithms are proposed to control and maintain a balance over these trade-offs. Also, the more complicated case of multiple sessions where each client is interested in an arbitrary subset of sessions is considered and two variants of the basic dissemination algorithm are proposed. The performance of all the proposed algorithms is evaluated via extensive numerical experiments.