• 제목/요약/키워드: Wireless Smart Sensors

검색결과 230건 처리시간 0.027초

구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구 (Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring)

  • 김은진;박종웅;심성한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.42-48
    • /
    • 2016
  • 사회기반시설물의 안전성을 효과적으로 평가하고 모니터링하기 위해 무선 스마트 센서가 개발되어 전 세계적으로 연구가 진행되고 있다. 무선 스마트 센서는 통상 계측 및 임베디드 데이터 연산, 무선 통신이 가능한 공통점을 갖고 있어 기존의 유선 기반 센서가 가진 단점을 극복할 수 있을 것으로 기대되고 있다. 그러나 구조물의 장기 모니터링의 경우 내구성이 충분하지 못해 발생하는 센서 고장이나, 환경적 이유로 인한 무선 통신이 불안정할 경우 계측 데이터를 가져올 수 없는 문제가 발생할 수 있다. 본 연구에서는 무선 스마트 센서 기반의 네트워크에서 이와 같은 문제로 센서 노드에 무선 통신으로 접근할 수 없는 경우를 대처하기 위해, 칼만 필터 기반의 데이터 복구를 수행하여 무선 스마트 센서 네트워크의 신뢰성을 향상시키는 기법을 제안한다. 본 논문에서는 무선 스마트 센서의 연산 기능을 활용하여 네트워크 내에서 계측된 가속도 데이터를 바탕으로 유실된 센서의 가속도 계측 데이터를 추정한다. 개발된 무선 스마트 센서 네트워크 시스템의 성능을 확인하기 위해 단순보 구조에서 실험을 수행하여 추정된 가속도 응답과 계측 값을 비교하였다.

Numerical simulation of structural damage localization through decentralized wireless sensors

  • 정민중;고봉환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.938-942
    • /
    • 2007
  • The proposed algorithm tries to localize damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides an effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

  • PDF

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

차세대 고속철도(동력분산식)에 적용할 스마트센서 사례 연구 (Case Studies on Smart Sensor Application for the Next Generation High-Speed EMU)

  • 장덕진;강송희;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1995-2005
    • /
    • 2008
  • Recently, the smart sensors and USN (Ubiquitous Sensor Network) technologies are emerging. Smart sensors add the capability of storing local temporary data, processing instant operations, transmitting information outward, to the simple sensing devices. The USN is a wireless network of sensor/smart sensors that can collect data anywhere anytime and exchange the data within the network. In this research, case studies are performed on the smart sensors and USN applications. The cases were grouped in four categories, domestic private, domestic public, foreign private, and foreign public. Based on that survey, promising applications will be proposed and developed to be implemented to the next generation high-speed EMU.

  • PDF

Time of Arrival range Based Wireless Sensor Localization in Precision Agriculture

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • 제3권2호
    • /
    • pp.14-17
    • /
    • 2014
  • Precision agriculture relies on information technology, whose precondition is providing real-time and accurate information. It depends on various kinds of advanced sensors, such as environmental temperature and humidity, wind speed, light intensity, and other types of sensors. Currently, it is a hot topic how to collect accurate information, the main raw data for agricultural experts, monitored by these sensors timely. Most existing work in WSNs addresses their fundamental challenges, including power supply, limited memory, processing power and communication bandwidth and focuses entirely on their operating system and networking protocol design and implementation. However, it is not easy to find the self-localization capability of wireless sensor networks. Because of constraints on the cost and size of sensors, energy consumption, implementation environment and the deployment of sensors, most sensors do not know their locations. This paper provides maximum likelihood estimators for sensor location estimation when observations are time-of arrival (TOA) range measurement.

지능형 홈을 위한 사용자 식별 및 출입 감지 시스템 (User Identification and Entrance/Exit Detection System for Smart Home)

  • 이선우
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.248-253
    • /
    • 2008
  • This paper presents a sensing system for smart home which can detect an location transition events such as entrance/exit of a member and identify the user in a group at the same time. The proposed system is compose of two sub-systems; a wireless sensor network system and a database server system. The wireless sensing system is designed as a star network where each of sensing modules with ultrasonic sensors and a Bluetooth RF module connect to a central receiver called Bluetooth access point. We propose a method to discriminate a user by measuring the height of the user. The differences in the height of users is a key feature for discrimination. At the same time, the each sensing module can recognize whether the user goes into or out a room by using two ultrasonic sensors. The server subsystem is a sort of data logging system which read the detected event from the access point and then write it into a database system. The database system could provide the location transition information to wide range of context-aware applications for smart home easily and conveniently. We evaluate the developed method with experiments for three subjects in a family with the installation of the developed system into a real house.

구조물 건전성 모니터링을 위한 스마트 센서 관련 최근 연구동향 (A Recent Research Summary on Smart Sensors for Structural Health Monitoring)

  • 김은진;조수진;심성한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권3호
    • /
    • pp.10-21
    • /
    • 2015
  • 구조물 건전성 모니터링은 센서로부터 구조물의 응답을 수집하고 분석하여 구조물의 정확한 상태를 진단하는 기술이다. 최근 노후화된 구조물의 증가로 인하여, 지속가능한 사회 발전을 위해 더욱 발달된 구조물 건전성 모니터링 기술이 요구되고 있다. 최신 구조물 건전성 모니터링 기술 중 하나인 무선 스마트 센서와 센서 네트워크 기술은 기존의 유선 방식의 모니터링 시스템과 비교하여 더욱 효율적이며 경제적인 모니터링 시스템의 구축을 가능하게 하는 기술이다. 최근까지도 관련 연구자들은 스마트 센서의 성능 및 확장성 향상을 위하여 연구개발을 진행하고, 다양한 실내, 실외 실험을 통한 성능 테스트를 진행하였다. 본 논문에서는 최근 (2010년 이후를 중심으로)에 개발된 스마트 센서의 하드웨어, 소프트웨어, 그리고 응용 사례들을 정리함으로써, 구조물 건전성 모니터링을 위한 스마트 센서의 최신 연구동향에 대해 소개하고자 한다.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.

Energy harvesting and power management of wireless sensors for structural control applications in civil engineering

  • Casciati, Sara;Faravelli, Lucia;Chen, Zhicong
    • Smart Structures and Systems
    • /
    • 제10권3호
    • /
    • pp.299-312
    • /
    • 2012
  • The authors' research efforts recently led to the development of a customized wireless control unit which receives the real-time feedbacks from the sensors, and elaborates the consequent control signal to drive the actuator(s). The controller is wireless in performing the data transmission task, i.e., it receives the signals from the sensors without the need of installing any analogue cable connection between them, but it is powered by wire. The actuator also needs to be powered by wire. In this framework, the design of a power management unit is of interest only for the wireless sensor stations, and it should be adaptable to different kind of sensor requirements in terms of voltage and power consumption. In the present paper, the power management efficiency is optimized by taking into consideration three different kinds of accelerometers, a load cell, and a non-contact laser displacement sensor. The required voltages are assumed to be provided by a power harvesting solution where the energy is stored into a capacitor.

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.