• 제목/요약/키워드: Wireless Sensors

검색결과 1,141건 처리시간 0.033초

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

고신뢰도 무선센서네트워크를 위한 홉핑 센서 재배치에 대한 연구 (On Relocation of Hopping Sensors for High Reliability Wireless Sensor Networks)

  • 김문성;박광진
    • 인터넷정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.47-53
    • /
    • 2011
  • 무선센서네트워크에서 살포한 센서 중 일부의 결함이 발생하거나 에너지가 고갈될 시, 이동 센서(Mobile Sensor)들의 재배치로 결함이 발생한 지역(즉, 센싱 홀: Sensing Hole)을 복구할 수 있다. 수많은 바위 등이 즐비한 거친 지역에서는 바퀴 기반의 이동센서는 적당하지 않으므로 점프를 통해 이동이 가능한 홉핑 센서가 필요하다. 본 논문에서는 발생한 센싱 홀의 복구를 위한 재배치 문제 및 그에 따른 다양한 문제들을 살펴본다. 과거 홉핑 센서들을 이동시키기 위하여 단지 최단경로만을 고려하였으나, 본 논문에서는 최대 엇갈림 없는 경로 및 다중경로를 활용하여 또다른 센싱홀의 발생을 막을 수 있었다. 시뮬레이션 결과는 제안하는 기법들이 최단경로를 기반으로 한 기법에 비해 홉핑 센서의 균형적인 분배와 이동성공률에서 우수함을 보인다.

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

그리퍼 접촉신호의 무선통신을 위한 제어장치 및 그리퍼 설계 (Design of Controller and Gripper for Wireless Communication of Gripper Contact Signal)

  • 김현민;김정진;김갑순
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.821-829
    • /
    • 2014
  • This paper describes the development of a wireless communication controller of gripper contact signal for industrial robot. The wireless communication gripper controller is composed of a robot wireless communication controller and a gripper wireless transmitting/receiving controller. The robot wireless communication controller transmits the data of gripper sensors, and the gripper wireless communication controller receives the data. And the controller sends the data to the robot controller of industrial robot. As a result of the characteristics test of the wireless communication gripper controller, it is thought that the robot wireless communication controller A transmits and receives three gripper wireless transmitting/receiving controller A1, A2, A3 another. Thus, the developed wireless communication gripper controller can be used for transmitting/ receiving the data of gripper sensors for industrial robot.

배전 설비의 무선 통신을 이용한 배전 설비의 신뢰성 향상 기술 동향 (Trend for Managing Electrical Distribution Equipments Using a Wireless Sensors)

  • 이주홍;윤주호;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.543-544
    • /
    • 2007
  • This paper introduce methods and analysis of a simple wireless sensor concept for detecting and locating faults as well as for load monitoring are presented. The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

태양광 모듈 개별 모니터링을 위한 무선 IoT센서 (Development of Wireless IoT Sensors for Individual Photovoltaic Module Monitoring)

  • 박종성;김창헌;이지원;김지현;유상혁;양범승
    • Current Photovoltaic Research
    • /
    • 제9권3호
    • /
    • pp.106-109
    • /
    • 2021
  • In order to perform photovoltaic (PV) operation and management (O&M) efficiently, individual PV module monitoring is becoming more important. In this research, we developed wireless IoT sensor which can monitor individual photovoltaic modules. This IoT sensor can detect the output voltage, current and module temperature of individual modules and provide monitored data by wireless communication. Measured voltage error was 1.23%, and it shows 16.6 dBM, 0.42sec and 7.1 mA for voltage, transmittance output, response time and mean power consumption, respectively. IoT sensors were demonstrated in the test field with real climate environment condition and each of 5 sensors showed precise results of voltage, current and temperature. Also, sensors were compared with commercial power-optimizers and showed result difference within 5%.

무선센서네트워크 환경의 웹기반 교량모니터링 시스템 (Web-Based Bridge Monitoring System with Wireless Sensor Network Environment)

  • 송종걸;김학수;정영화;이상우;남왕현;장동휘
    • 한국방재학회 논문집
    • /
    • 제8권5호
    • /
    • pp.35-44
    • /
    • 2008
  • 무선센서네트워크 환경의 웹기반(web-based) 교량모니터링시스템을 갖추기 위하여 무선통신을 기반으로 디지털 초소형센서와 마이크로 프로세싱, 데이터 취합 및 관리를 위한 데이터베이스, 각종 제어 프로그램, 인터넷 데이터 전송 프로세서를 기본적으로 구축하여 무선으로 수신된 데이터를 수집하고 분석하였다. 그리고 이러한 교량모니터링 시스템의 적용성을 검증을 위하여 동일조건에서 유선방식과 무선방식으로 실험을 병행 수행한 후 각각의 계측결과들을 비교하였다. 비교한 결과 유선으로 계측한 결과와 무선으로 계측한 값은 유사하지만 무선센서의 통신과정에서 데이터의 손실이 발생하는 것으로 나타났다. 또한 실내실험과 현장실험을 통하여 본 연구의 효율성과 적용성을 검증하였다.

Sensor Location Estimation in of Landscape Plants Cultivating System (LPCS) Based on Wireless Sensor Networks with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.226-231
    • /
    • 2020
  • In order to maximize the production of landscape plants in optimal condition while coexisting with the environment in terms of precision agriculture, quick and accurate information gathering of the internal environmental elements of the growing container is necessary. This may depend on the accuracy of the positioning of numerous sensors connected to landscape plants cultivating system (LPCS) in containers. Thus, this paper presents a method for estimating the location of the sensors related to cultivation environment connected to LPCS by measuring the received signal strength (RSS) or time of arrival TOA received between oneself and adjacent sensors. The Small sensors connected to the LPCS of container are known for their locations, but the remaining locations must be estimated. For this in the paper, Rao-Cramer limits and maximum likelihood estimators are derived from Gaussian models and lognormal models for TOA and RSS measurements, respectively. As a result, this study suggests that both RSS and TOA range measurements can produce estimates of the exact locations of the cultivation environment sensors within the wireless sensor network related to the LPCS.

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • 제17권4호
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.