• 제목/요약/키워드: Wireless Sensor Network(WSNs)

Search Result 278, Processing Time 0.026 seconds

Efficient Energy Management for a Solar Energy Harvesting Sensor System (태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun;Yoon, Ik-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.478-488
    • /
    • 2009
  • Using solar power in wireless sensor networks (WSNs) requires adaptation to a highly varying energy supply and to a battery constraint. From an application's perspective, however, it is often preferred to operate at a constant quality level as opposed to changing application behavior frequently. Reconciling the varying supply with the fixed demand requires good tools for allocating energy such that average of energy supply is computed and demand is fixed accordingly. In this paper, we propose a probabilistic observation-based model for harvested solar energy. Based on this model, we develop a time-slot-based energy allocation scheme to use the periodically harvested solar energy optimally, while minimizing the variance in energy allocation. We also implement the testbed and demonstrate the efficiency of the approach by using it.

A Hybrid Link Quality Assessment for IEEE802.15.4 based Large-scale Multi-hop Wireless Sensor Networks (IEEE802.15.4 기반 대규모 멀티 홉 무선센서네트워크를 위한 하이브리드 링크 품질 평가 방법)

  • Lee, Sang-Shin;Kim, Joong-Hwan;Kim, Sang-Cheol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.35-42
    • /
    • 2011
  • Link quality assessment is a crucial part of sensor network formation to stably operate large-scale wireless sensor networks (WSNs). A stability of path consisting of several nodes strongly depends on all link quality between pair of consecutive nodes. Thus it is very important to assess the link quality on the stage of building a routing path. In this paper, we present a link quality assessment method, Hybrid Link Quality Metric (HQLM), which uses both of LQI and RSSI from RF chip of sensor nodes to minimize set-up time and energy consumption for network formation. The HQLM not only reduces the time and energy consumption, but also provides complementary cooperation of LQI and RSSI. In order to evaluate the validity and efficiency of the proposed method, we measure PDR (Packet Delivery Rate) by exchanging multiple messages and then, compare PDR to the result of HQLM for evaluation. From the research being carried out, we can conclude that the HQLM performs better than either LQI- or RSSI-based metric in terms of recall, precision, and matching on link quality.

Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks (LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법)

  • Nam, Su-Man;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.558-564
    • /
    • 2013
  • Wireless sensor networks (WSNs) contain limited energy resources and are left in open environments. Since these sensor nodes are self-operated, attacks such as sinkhole attacks are possible as they can be compromised by an adversary. The sinkhole attack may cause to change initially constructed routing paths, and capture of significant information at the compromised node. A localized encryption and authentication protocol (LEAP) has been proposed to authenticate packets and node states by using four types of keys against the sinkhole attack. Even though this novel approach can securely transmits the packets to a base station, the packets are forwarded along the constructed paths without checking the next hop node states. In this paper, we propose the next hop node selection method to cater this problem. Our proposed method evaluates the next hop node considering three factors (i.e., remaining energy level, number of shared keys, and number of filtered false packets). When the suitability criterion for next hop node selection is satisfied against a fix threshold value, the packet is forwarded to the next hop node. We aim to enhance energy efficiency and a detour of attacked areas to be effectively selected Experimental results demonstrate validity of the proposed method with up to 6% energy saving against the sinkhole attack as compared to the LEAP.

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

Continuous Moving Object Tracking Using Query Relaying in Tree-Based Sensor Network (트리 기반의 센서 네트워크에서 질의 중계를 통한 이동 객체의 연속적인 위치 획득 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Yim, Yongbin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.271-280
    • /
    • 2014
  • In wireless sensor networks, there have been two methods for sensing continuously moving object tracking: user-query based method and periodic report based method. Although the former method requires overhead for user query rather than the latter method, the former one is known as an energy-efficient method without transferring unnecessary information. In the former method, a virtual tree, consisting of sensor nodes, is exploited for the user querying and sensor reporting. The tree stores the information about mobile objects; the stored information is triggered to report by the user query. However, in case of fast moving object, the tracking accuracy reduces due to the time delay of end-to-end repeated query. To solve the problem, we propose a query relaying method reducing the time delay for mobile object tracking. In the proposed method, the nodes in the tree relay the query to the adjacent node according to the movement of mobile object tracking. Relaying the query message reduces the end-to-end querying time delay. Simulation results show that our method is superior to the existing ones in terms of tracking accuracy.

Key Re-distribution Scheme of Dynamic Filtering Utilizing Attack Information for Improving Energy Efficiency in WSNs (무선 센서 네트워크에서 에너지 효율성 향상을 위해 공격정보를 활용한 동적 여과 기법의 키 재분배 기법)

  • Park, Dong-Jin;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • Wireless sensor networks are vulnerable to an adversary due to scarce resources and wireless communication. An adversary can compromise a sensor node and launch a variety of attacks such as false report injection attacks. This attack may cause monetary damage resulting in energy drain by forwarding the false reports and false alarms at the base station. In order to address this problem, a number of en-route filtering schemes has been proposed. Notably, a dynamic en-route filtering scheme can save energy by filtering of the false report. In the key dissemination phase of the existing scheme, the nodes closer to the source node may not have matching keys to detect the false report. Therefore, continuous attacks may result in unnecessary energy wastage. In this paper, we propose a key re-distribution scheme to solve this issue. The proposed scheme early detects the false report injection attacks using initially assigned secret keys in the phase of the key pre-distribution. The experimental results demonstrate the validity of our scheme with energy efficiency of up to 26.63% and filtering capacity up to 15.92% as compared to the existing scheme.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

A Centralized Deployment Protocol with Sufficient Coverage and Connectivity Guarantee for WSNs (무선 센서 네트워크에서 유효 커버리지 및 접속성 보장을 위한 중앙 집중형 배치 프로토콜)

  • Kim, Hyun-Tae;Zhang, Gui-Ping;Kim, Hyoung-Jin;Joo, Young-Hoon;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.683-690
    • /
    • 2006
  • Reducing power consumption to extend network lifetime is one of the most important challenges in designing wireless sensor networks. One promising approach to conserving system energy is to keep only a minimal number of sensors active and put others into low-powered sleep mode, while the active sensors can maintain a connected covet set for the target area. The problem of computing such minimum working sensor set is NP-hard. In this paper, a centralized Voronoi tessellation (CVT) based approximate algorithm is proposed to construct the near optimal cover set. When sensor's communication radius is at least twice of its sensing radius, the covet set is connected at the same time; In case of sensor's communication radius is smaller than twice of its sensing radius, a connection scheme is proposed to calculate the assistant nodes needed for constructing the connectivity of the cover set. Finally, the performance of the proposed algorithm is evaluated through theoretical analysis and extensive numerical experiments. Experimental results show that the proposed algorithm outperforms the greedy algorithm in terms of the runtime and the size of the constructed connected cover set.