• Title/Summary/Keyword: Wireless Sensor

Search Result 4,215, Processing Time 0.028 seconds

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.

The Analysis of Estrus Behavior and the Evaluation of Conditions Required for Improving Reproductive Efficiency in Holstein Dairy Cows using a Heat Detector (발정탐색기를 이용한 Holstein 젖소의 발정행동 분석 및 번식효율 향상을 위한 조건의 평가)

  • Baek, Kwang-Soo;Lee, Wang-Shik;Son, Jun-Kyu;Lim, Hyun-Joo;Yoon, Ho-Beak;Kim, Tae-Il;Hur, Tai-Young;Choe, Chang-Yong;Jung, Young-Hun;Kwon, Eung-Gi;Jung, Yeon-Sub;Kim, Sun-Kyu;Won, Jeong-Il
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.177-184
    • /
    • 2013
  • The objective of this study was to analyze the accuracy of estrus detection of heat detector and analysis of estrus behavior (mounting and mounted), and the evaluation of conditions required for improving reproductive efficiency in Holstein dairy cows fitted with a estrous detector. The heat detection system consists of estrous detector based on wireless sensor and an electric bulletin board displayed estrus behavior data. When cow mounting other cows, the accuracy of estrus behavior displayed an electric bulletin board were 87.5% (mounting other cows only), 100% (mounting other cows but not standing), 80.0% (mounting other cows with standing for 1~4 seconds), 90.0% (mounting other cows but not standing for 1~4 seconds), 80% (mounting other cows with standing for more than 5 seconds) and 90.0% (mounting other cows but not standing for more than 5 seconds). When cow mounted other cows, the accuracy of estrus behavior displayed an electric bulletin board were 100% (mounted other cows but not standing), 100% (mounted other cows with standing for 1~4 seconds), 100% (mounted other cows but not standing for 1~4 seconds) and 100% (mounted other cows with standing for more than 5 seconds). Circadian distribution of first observed in estrus were 59.1% (am 8~pm 6) and 40.9% (pm 6~am 8). Distribution for the number of estrus behavior were 40.9% (less than 3 times), 36.4% (4~6 times) and 22.7% (more than 4 times). The conception rates relative to interval from first estrus behavior to insemination for estrus periods were 23.1% (less than 11 hours) and 55.6% (12~20 hours).

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.