• 제목/요약/키워드: Wireless Power Transfer System

검색결과 334건 처리시간 0.018초

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

6.78MHz, 거리 60cm, 50W급 무선 전력 전송 시스템용 High Quality Factor PCB 코일 개발 (Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System)

  • 이승환;이경표
    • 한국철도학회논문집
    • /
    • 제19권4호
    • /
    • pp.468-479
    • /
    • 2016
  • 고압 전선 등에 장착된 시스템에 전원을 공급하기 위해서는 절연 이격 거리 이상의 거리에 무선으로 수십 Watt 급의 전력을 보낼 수 있는 시스템이 필요하다. 이러한 무선 전력 전송 시스템은 대개 코일의 크기가 10cm 이상의 대형이다. 본 연구에서는 이처럼 대형 코일을 Printed circuit board를 이용해 제작할 경우 발생하는 손실 발생원 들을 분석하고 그 중 가장 주요한 손실원인이 Dielectric loss 라는 것을 밝혔다. 또한 이 dielectric loss를 최소화 하기 위해서 PCB의 재질 선정 방법 및 Distributed tuning capacitor method를 제시해 $40cm{\times}40cm$ 크기의 4턴 및 5턴 코일의 설계 방법을 제시했고, 실험을 통해 Quality factor를 300 이상으로 만들 수 있음을 보였다.

직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델 (DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System)

  • 노은총;이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

무가선 전동차용 울트라커패시터 모듈 충·방전을 위한 DC-DC 컨버터 설계 (Design of DC-DC Converter to Charge and Discharge Ultra-Capacitor Modules for Wireless Trains)

  • 조정민;한영재;김재원;이장무;김길동
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1776-1781
    • /
    • 2015
  • Electric power trains receive electric power from overhead cables via a pantograph system. Power collector system in trains increase the cross section of tunnel and require a massive coreless filter reactor in propulsion inverter because of the power disturbance by contact loss phenomenon of a train. In this paper we proposed a wireless train which can run to next station with charging energy of ultra-capacitor module block. We designed DC-DC converter to charge and discharge ultra-capacitor modules by using Next Train running test results and confirm the feasibility of the proposed system through simulation.

Efficiency Enhancement of Wireless Power Transfer with Optimum Coupling Mechanism for Mid-range Operation

  • Anowar, Tanbir Ibne;Kumar, Narendra;Ramiah, Harikrishnan;Reza, Ahmed Wasif
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1556-1565
    • /
    • 2017
  • This paper depicts the design, implementation and analysis of efficient resonant based wireless power transfer (WPT) technique using three magnetic coupled coils. This work is suitable for mid ranged device due to small form factor while minimizing the loading effect. A multi turned loop size resonator is exploited for both the transmitter and receiver for longer distance. In this paper, class-E power amplifier (class-E PA) is introduced with an optimum power tracking mechanism of WPT system to enhance the power capability at mid-range with a flat gain. A robust method of finding optimum distance is derived with an experimental analysis of the designed system. In this method, the load sensitive issue of WPT is resolved by tuning coupling coefficient at considerable distances. Our designed PA with a drain efficiency of 77.8% for a maximum output of 5W is used with adopted tuning technique that improves the overall WPT system performance by 3 dB at various operating points.

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.