• Title/Summary/Keyword: Wireless Positioning

Search Result 367, Processing Time 0.022 seconds

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

Stochastic Confidence Test on Indoor Moving Object's Tracks (옥내 이동 물체 궤적의 통계적 검정)

  • Yim, Jae-Geol;Shim, Kyu-Bark;Jeong, Seung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.97-106
    • /
    • 2009
  • WLAN(wireless local area network)-based positioning is the most attractive because it does not require any special equipments dedicated for positioning even though it is less accurate than the other strategies. Applying our WLAN-based decision tree method for indoor positioning, we obtained pedestrian's tracks, and performed stochastic confidence tests on the tracks in order to validate them.

  • PDF

A Testbed of Performance Evaluation for Fingerprint Based WLAN Positioning System

  • Zhao, Wanlong;Han, Shuai;Meng, Weixiao;Zou, Deyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2583-2605
    • /
    • 2016
  • Fingerprint positioning is a main stream and key technique for seamless positioning systems. In this paper, we develop a performance evaluation testbed for fingerprint based Wireless Local Area Network (WLAN) positioning system. The testbed consists of positioning server, positioning terminal, Access Point (AP) units, positioning accuracy analysis system and testing scenarios. Different from other testbeds tended to focus on testing in same situation, in the proposed testbed, a couple of scenarios are set to test the positioning system including indoor and outdoor environments. Handset-side positioning mode and network-side positioning mode are provided simultaneously. Variety of motion models, such as static model, low-speed model and high-speed model are considered as well as different positioning algorithms. Finally, some implementation cases are analyzed to verify the credibility of the testbed.

Positioning of Wireless Base Station using Location-Based RSRP Measurement

  • Cho, Seong Yun;Kang, Chang Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.183-192
    • /
    • 2019
  • In fingerprint-based wireless positioning, it is necessary to establish a DB of the unmeasured area. To this end, a method of estimating the position of a base station based on a signal propagation model, and a method of estimating the information of the received signal in the unmeasured area based on the estimated position of the base station have been investigating. The purpose of this paper is to estimate the position of the base station using the measured information and to analyze the performance of the positioning. Vehicles equipped with a GPS receiver and signal measuring equipment travel the service area and acquire location-based Reference Signal Received Power (RSRP) measurements. We propose a method of estimating the position of the base station using the measured information. And the performance of the proposed method is analyzed on a simulation basis. The simulation results confirm that the accuracy of the positioning is affected by the measured area and the Dilution of Precision (DOP), the accuracy of the position information obtained by the GPS receiver, and the errors of the signal included in the RSRP. Based on the results of this paper, we can expect that the position of the base station can be estimated and the DB of the unmeasured area can be constructed based on the estimated position of the base stations and the signal propagation model.

Indoor Position Technology in Geo-Magnetic Field (지구 자기장 기반의 Fingerprint 실내 위치추정 방법 연구)

  • Hur, Soojung;Song, Junyeol;Park, Yongwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.131-140
    • /
    • 2013
  • Due to the limitations of the existing indoor positioning system depending on the radio wave, at present, it is required to introduce a new method in order to improve the accuracy in indoor environment. Recently, bio-inspired technology has become the future core technology. Thus, this study examined the accurate positioning method applying the abilities that animals with homing instinct measure their position by searching geomagnetic field with the use of their biomagnets. In order to confirm the applicability of geomagnetic field, a new source for indoor positioning, this study separated the constituent materials and building structure and designed the structures that can carry the actual magnetic field sensor and the data collection module. Subsequently, this study investigated the applicability of geomagnetic field as a positioning source by establishing the positioning system of Fingerprint method. In performance evaluation of the positioning system, the geomagnetic strength-based positioning system was similar to or approximately 20 percent higher than the wireless LAN-based positioning system in the buildings with the existing wireless LAN. Thus, in the environment without infrastructure for indoor positioning, the geomagnetic, an independent earth resource, can make it possible to realize the indoor positioning.

Design and Implementation of Outdoor Positioning System Using MSS Mechanism & Wireless AP characteristic (MSS 기법과 무선 AP 특징을 활용 실외 측위 시스템 설계 및 구현)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.433-439
    • /
    • 2011
  • The positioning system based on wireless AP collects AP information distributed in the real world, stores it into database, and measures the position objects by comparing with searched AP information. The existing fingerprinting method is a probabilistic modeling method that acquires much of the data collected from one location upon database composition, and stores the average of the data for the sake of use it in positioning objects. Using the average value, however, may cause the probability of errors Such errors are fatal weaknesses for services based on the accurate position. This paper described the characteristics and problems of the previously used wireless AP positioning system, and proposed a method of using the AP DB and an MSS mechanism for outdoor positioning in order to solve the aforementioned problems. And the results obtained from experimental tests showed that the proposed method achieved very low error rate(27%) compared with the existing method.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

A Comparative Study on WPS_WS and Traditional Wireless Positioning Systems (WPS_WS기법과 전통적 무선 측위 시스템과의 비교 연구)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.239-241
    • /
    • 2011
  • Recently, studies on the indoor positioning system in application of wireless AP have been actively going on. The indoor wireless positioning system can be classified into several types according to the positioning techniques. Among them, the fingerprint technique is a technique that establishes the radio map by collecting MAC information of AP and RSSI (Received Signal Strength Indication) before executing positioning and then determines the position in comparison with the information of AP collected during the course of positioning. In the traditional fingerprint techniques, they control and manage by installing APs that are utilized for positioning. However, in case of specific indoors, the management can be done by installing a small number of APs but, in case of wide outdoors, it's practically impossible to install and manage equipments for positioning. In order to solve such problem, there is an improved fingerprint technique that utilizes the APs that are already scattered around. This technique will allow positioning without additional cost, but even the improved fingerprint positioning technique may incur dropped accuracy as well due to wide fluctuation of the AP information. In this paper, the traditional fingerprint technique and the improved fingerprint technique are explained in comparison, and we will compares difference in performance with the proposed WPS_WS (Wi-Fi Positioning System_Weak Signal) technique.

  • PDF

Study on optimized positioning of wireless communication equipment for CBTC (CBTC를 위한 무선통신장비의 최적 위치 선정연구)

  • Kim Yun-Bae;Jung Jae-Ok
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1199-1204
    • /
    • 2004
  • In this paper, the DCS (Data Communication System) which is a main part of CBTC (Communication Based Train Control) system is consisted of radio based wireless communication system and optical based wired system. In the radio based wireless communication, the location of AP(Access Point) Enclosure and Antenna shall be optimized for the guaranteed communication channel between wayside and trains either open aired or tunnelled area. This study is introducing the way of determinating optimized positioning the radio based wireless communication equipment in Bundang Line. At this moment, this CBTC project for the KNR's (Korea National Railway) intelligent train control system are in installment phase therefore the simulation data can show only from lab equipment. After the phase I testing, more detailed data can be collected and advanced paper will be issued in a short time.

  • PDF

Reference Particles-based LTE Base Station Positioning

  • Cho, Seong Yun;Kwon, Jae Uk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.207-214
    • /
    • 2021
  • A new positioning technique for positioning of LTE base stations is proposed. The positioning information of the base station is absolutely necessary for model-based wireless positioning, and is required in some of the various merhodologies for estimating signals in an uncorrected area when construnting a database for fingerprinting-based positioning. Using the acquired location-based Reference Signal Received Power (RSRP) information to estimate the location of the base station, it is impossible with the existing trilateration methods. Therefore, in this paper, a method using reference particles is proposed. Particles are randomly generated in the application area, and signal propagation modeling is performed assuming that a base station is located in each particle. Based on this, the errors of measurements are calculated. The particle group with the minimum measurement errors is selected, the position of the base station is estimated through weighted summation, and the signal propagation model of the corresponding base station is built at the same time. The performance of the proposed technology is verified using data acquired in Seocho-dong, Seoul.