• Title/Summary/Keyword: Wireless Location

Search Result 1,174, Processing Time 0.026 seconds

Location Information System based on LoRa(Long Range) and IPv6 (LoRa(Long Range)와 IPv6 기반의 위치정보시스템)

  • Choi, Min-Cheol;Jeong, Jaeho;Kim, Hong-Joon;Lee, Bo-Kyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • As the IoT industry expands, various application services based on location information of devices are released. In order to transmit the location information, various wireless communication technologies such as Bluetooth and Wi-Fi are used. However, these technologies have limited coverage, and cellular networks with relatively wide coverage have the disadvantage of paying for use. In this paper, we implemented our own location information system using LoRa, a low power long distance wireless communication technology. As a result, no cost is incurred and it has relatively wider coverage than other wireless communication technologies using LoRa technology. The implementation system enables LoRa communication based on IPv6 using CoAP and 6LoWPAN, and enables multiple devices to interwork with the existing Internet environment.

An Application for Tracking the Location of Material using RFID and Wireless Network Technology (RFID와 무선네트워크 기술을 이용한 자재위치파악 방안)

  • Lee, Nam-Su;Song, Jae-Hong;Yoon, Su-Won;Chin, Sang-Yoon;Kwon, Soon-Wook;Kim, Yea-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.523-528
    • /
    • 2006
  • The management of construction materials is one of the important administration factor to perform construction projects. If it is not flexible to supply necessary materials to a workplace at a proper time, some problems such as a construction cost increase, an operation delay, a lowering of work efficiency and etc. could occur during the progress of work. Therefore, tracking the precise location of materials is important and necessary to input materials in the accurate place. Although Location sensing techniques comprise GPS, Active Badge, EasyLing and so forth, there are technical limitations to apply these techniques on construction site. Accordingly, in this paper, we propose the technically feasible method to automatically locate materials on site using recent RFID and wireless network technologies.

  • PDF

Route Tracking of Moving Magnetic Sensor Objects and Data Processing Module in a Wireless Sensor Network (무선 센서 네트워크에서의 자기센서기반 이동경로 추적과 데이터 처리 모듈)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.105-114
    • /
    • 2007
  • In sensor network processing environments, current location tracking methods have problems in accuracy on receiving the transmitted data and pinpointing the exact locations depending on the applied methods, and also have limitations on decision making and monitoring the situations because of the lack of considering context-awareness. In order to overcome such limitations, we proposed a method which utilized context-awareness in a data processing module which tracks a location of the magnetic object(Magnetic Line Tracer) and controlled introspection data based on magnetic sensor. Also, in order to prove its effectiveness we have built a wireless sensor network test-bed and conducted various location tracking experiments of line tracer using the data and resulted in processing of context-aware data. Using the new data, we have analyzed the effectiveness of the proposed method for locating the information database entries and for controlling the route of line tracer depending on context-awareness.

Location-based Multicast Routing Algorithms for Wireless Sensor Networks in Presence of Interferences (무선 센서네트워크상에서 간섭영향을 고려한 위치정보기반 멀티캐스트 라우팅 알고리즘)

  • Cha, Jae-Young;Kong, Young-Bae;Choi, Jeung-Won;Ko, Jong-Hwan;Kwon, Young-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.219-226
    • /
    • 2012
  • In wireless sensor networks (WSNs), location-based multicast routing (LMR) technique can increase the network life time and the channel capacity by reducing the number of duplicated data transmissions and control messages. However, previous LMR techniques can suffer from significant performance degradation due to concrete walls or other interfering objects deployed in the real environment, since they transmit the packets by using only the locations of the sensor nodes. To solve this problem, we propose an interference-aware location based multicast algorithm for WSNs. In the proposed algorithm, each node adjusts the energy cost for each link adaptively considering the interference effect and uses it for multicast decision in order to minimize the interference impact. Experimental results show that the proposed algorithm improves the delivery and energy performance when the network is affected by interference.

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).

Region and Movement Based Adaptive Location Management for Wire/Wireless Convergent Networks based-on Cognitive Networking (인지 네트워킹기반 유무선 융합망에서의 영역과 이동 임계치를 기반으로 한 적응형 이동성 관리)

  • Kwon, Eun-Mi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.77-82
    • /
    • 2012
  • In this paper, the new location management scheme based on region and movement threshold has been proposed in order to minimize the required cost to handle the resource location management signaling traffics under the wire/wireless convergent networks when the users are moving around the cold and hot regions. In this scheme, the sequential paging is supposed to be performed according to the movement threshold which can be changed in accordance with the number of movements that each mobile user had made while it is moving around the resource regions. With the proposed scheme, the cost of managing the location management traffics and efficient spectrum assignment overhead can be minimized by placing signaling traffics for location managements and also allocating radio spectrum considering individual movement behaviors.

Concealing Communication Source and Destination in Wireless Sensor Networks (Part I) : Protocol Evaluation (무선 센서 네트워크에서의 통신 근원지 및 도착지 은닉(제2부) : 프로토콜 평가)

  • Tscha, Yeong-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.379-387
    • /
    • 2013
  • In large-scale wireless sensor networks, tremendous amount of dummy packets is usually accompanied by keeping location privacy of the communication source and destination against global eavesdropping. In our earlier work we designed a location privacy routing protocol, ELPR(End-node Location Privacy Routing) in which the generation of dummy packets at each idle time-slot while transferring data packets are restricted to only the nodes within certain areas of encompassing the source and destination, respectively. In this paper, it is given that ELPR provides various degrees of location privacy while PCM(Periodic Collection Method) allows the only fixed level. Simulation results show that as the number of nodes or data packets increases ELPR permits in terms of the number of generated packets more cost-effective location privacy than PCM.

An On-demand Station Location Management scheme using 6-address structure of IEEE 802.11s (IEEE 802.11s 6-Address 구조를 이용한 On-demand 방식 단말 위치 관리기법)

  • Jang, Jeong-Hun;Kong, Jong-Min;Kim, Jong-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.829-836
    • /
    • 2013
  • Wireless mesh networks(WMNs) are wireless backbone networks technology consisting of a multi-hop routers. Location management is essential to provide a service to the terminal in WMNs. IEEE 802.11s standards have two basic location management scheme for location management - the proxy registration procedure and the associated station discovery protocol. These basic schemes, however, suffer from serious drawbacks including redundancy control message, ineffective location information maintenance, additional delay time. This paper propose an on-demand station location management scheme using 6-address structure of IEEE 802.11s. Through analysis and experimental evaluation on simulation, we show that proposal scheme reduce control message and forwarding delay time.

Optimization Routing Protocol based on the Location, and Distance information of Sensor Nodes (센서 노드의 위치와 거리 정보를 기반으로 전송 경로를 최적화하는 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • In order for location information to deliver the collected information, it needs Sensor Nodes in an environment of Sensor Network. Each sensor sends data to a base station through the process of routing in a wireless sensor network environment. Therefore, Offering accurate location information is very important in a wireless sensor network environment. Most of existed routing methods save all the informations of nodes at the area of 1-hop. In order to save these informations, unnecessary wasted energy and traffics are generated. Routing Protocol proposed in this paper doesn't save node's location information, and doesn't exchange any periodic location information to reduce wasted energy. It includes transmission range of source nodes and nodes with the location information, however it doesn't include any nodes' routing near 1-hope distance.

An Energy Efficient Communication Protocol using Location Information in Wireless Sensor Networks (무선 센서 망에서 위치 정보를 이용한 에너지 효율적인 통신 프로토콜)

  • Jin, Min-Sook;Park, Ho-Sung;Lee, Eui-Sin;Kim, Tae-Hee;Lee, Jeong-Cheol;Kim, Sang-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.322-329
    • /
    • 2009
  • Many researches in wireless sensor networks have used a geographic routing to effectively disseminate data between sinks and sources. To know the location information, the geographic routing has proposed two manners. A sink-initiated and a source-initiated are flooding to disseminate its location information in WSN. However, these two manners have two problems. Firstly, whenever they move, they flood their location information. Secondly, their location information is disseminated unnecessary nodes besides nodes which send and receive data in actually. Therefore, this paper proposes a protocol that can solve the two problems and disseminate effectively data between few sinks and few sources. The proposed protocol exploits a location information manager that manages location information of the sinks and the sources. We also compare the performance of the proposed protocol with the existing protocols through a simulation.