• Title/Summary/Keyword: Wireless Controlled

Search Result 318, Processing Time 0.026 seconds

Development of Wireless Neuro-Modulation System for Stroke Recovery Using ZigBee Technology (ZigBee를 이용한 뇌졸중 치료용 무선 전기 자극기 개발)

  • Kim, G.H.;Ryu, M.H.;Shin, Y.I.;Kim, H.I.;Kim, N.G.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2007
  • Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).

Design and Fabrication of USN/RFID Module for Intelligent Wireless Sensor Network (지능형 무선 센서네트워크 구현을 위한 USN/RFID 모듈의 설계 및 제작에 관한 연구)

  • Kang Ey Goo;Chung Hun-Suk;Lee Jun-Hwan;Hyun Deuk Chang;Hwang Sung-Il;Song Bong-Seob;Lee Sang-Hun;Kim Young-Jin;Oh Sang-Ik;Ju Seung-Ho;Lee Se-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.209-215
    • /
    • 2006
  • This paper was proposed Intelligent and wireless USN/RFID module system that can overcome disadvantage of existing RFID system with no sensing module and wire communication. The proposed USN/RFID system was designed and fabricated. After fabricating new system, we analyzed the characteristics of USN/RFID module. After design VCO block that is point circuit to develop next generation system one chip of RFID system, we were carried out simulation and verified the validity. this paper was showed that VCO system was enough usable in wireless network module. USN/RFID Reader module shows superior result that validity awareness distance corresponds to 30 M in the case of USN and to 5 M in RFID Reader's case and 900 MHz of commercial frequency does practical use enoughly in range of high frequency. The USN/RFID Reader module is considered to act big role to Ubiqitous industry offering computing surrounding of new concept that is intelligence type service and that was associated to real time location system(RTLS), environment improvement/supervision, national defense, traffic administration etc.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

High Performance QoS Multicast Routing Scheme for Real-Time Mobile Multimedia Applications in Wireless Mesh Networks (무선메쉬네트워크에서 실시간 이동 멀티미디어 응용을 위한 고성능 QoS 멀티캐스트 라우팅 기법)

  • Kang, Moonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • In this paper, an enhanced QoS multicast routing scheduling scheme is proposed to adapt to a dynamic mobile traffic condition for wireless mesh networks (WMNs). It handles the network QoS by controlling the delay constraints for multimedia applications. The group size will be controlled according to both the current network state and QoS requirements. The dynamic reconstruction of QoS multicast tree can be obtained from preprocessing with both the partial multicast routing scheme and the traffic estimation. Performance evaluation of the proposed scheme is carried out on randomly generated graph derived from the wireless mesh network, by choosing the optimal value related to the appropriate delay bounds. Simulation results show that the proposed scheme can improve the performance of QoS multicast routing for WMNs.

Transmission Rate Priority-based Traffic Control for Contents Streaming in Wireless Sensor Networks (무선 센서 네트워크에서 콘텐츠 스트리밍을 위한 전송율 우선순위 기반 트래픽제어)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3176-3183
    • /
    • 2011
  • Traffic and congestion control in the wireless sensor network is an important parameter that decides the throughput and QoS (Quality of Service). This paper proposes a transmission rate priority-based traffic control scheme to serve digital contents streaming in wireless sensor networks. In this paper, priority for transmission rate decides on the real-time traffic and non-real-time with burst time and length. This transmission rate-based priority creates low latency and high reliability so that traffic can be efficiently controlled when needed. Traffic control in this paper performs the service differentiation via traffic detection process, traffic notification process and traffic adjustment. The simulation results show that the proposed scheme achieves improved performance in delay rate, packet loss rate and throughput compared with those of other existing CCF and WCA.

Design and Implementation of Location Management System of Stock Keeping Unit with High Mobility Using Embedded System and Wireless LAN (임베디드 시스템과 무선 랜을 이용한 이동성이 높은 재고단위의 위치관리 시스템 설계 및 구현)

  • Lee, Jae-Hyun;Kwon, Kyung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.413-420
    • /
    • 2002
  • It it essential to get the exact location information of products for a warehouse management. It is very hard, however, to know the location of products which change their location in warehouse frequently This causes the effective warehouse management to be almost impossible. In this paper, we suggest a new location management system for such a SKU(Stock Keeping Unit) with high mobility. The system is composed of RFID (Radio Frequency IDentification), a management terminal with wireless LAN, mobile devices (Cellular Phone & PDA), and a central management system. As a model of a SKU with high mobility, we selected a used-car stored in a large-scale warehouse. We designed and implanted used-car location management system. After analyzing the operations of each position in used-car warehouse where the system will run, we implemented each function. This research shows that an embedded system with wireless LAN is able to know the status of coming in and cut and location of a SKU with high mobility in warehouse very accurately in real time. Therefore, it makes the warehouse to be controlled systematically.

A Study on the Propagation Characteristics of Wireless Communication System for Firefighters in Kimhae Site (김해지역 소방무선통신시스템의 전파특성 연구)

  • Lee, Su-Bin;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.168-174
    • /
    • 2015
  • Wireless communication system for firefighters has an important role as the last communication method between the commander and the firefighters in disaster sites like fire. But the operation of Gyeongnam wireless communication system is installed, and maintained and controlled without criteria for the selection of a transmitting station and the analysis of propagation environment because of the lack of budget and the absence of professional personnel. To improve the performance of the radio station, this paper theoretically calculated free space loss of UHF 400 MHz band used by all firefighters in Gyeongnam and diffractions caused by single and multiple obstacles and computed the error after comparing the results of the actual measurement to those of simulation with FRAS operated by KFL. In the results, Deygout model was the most consistent with the actual measurement for 400MHz band in Kimhae site.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Ubiquitous-Based Mobile Control and Monitoring of CNC Machines for Development of u-Machine

  • Kim Dong-Hoon;Song Jun-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.455-466
    • /
    • 2006
  • This study was an attempt to control and monitor Computerized Numerical Controller (CNC) machines anywhere and anytime for the development of a ubiquitous machine (u-machine). With a Personal Digital Assistant (PDA) phone, the machine status and machining data of CNC machines can be monitored in wired and wireless environments, including the environments of IMT2000 and Wireless LAN. Moreover, CNC machines can be controlled anywhere and anytime. The concept of the anywhere-anytime controlling and monitoring of a manufacturing system was implemented in this study for the purpose of u-manufacturing and u-machines. In this concept, the communication between the CNC controller and the PDA phone was successfully performed anywhere and anytime for the real-time monitoring and control of CNC machines. In addition, the interface between the CNC controller and the developed application module was implemented by Object linking and embedding for Process Control (OPC) and shared CNC memory. For communication, the design of a server contents module within the target CNC was based on a TCP/IP. Furthermore, the client contents module within the PDA phone was designed with the aid of embedded c++ programming for mobile communication. For the interface, the monitoring data, such as the machine status, the machine running state, the name of the Numerical Control (NC) program, the alarm and the position of the stage axes, were acquired in real time from real machines with the aid of the OPC method and by sharing the CNC memory. The control data, such as the start, hold, emergency stop, reserved start and reserved stop, were also applied to the CNC domain of the real machine. CNC machines can therefore be controlled and monitored in real time, anywhere and anytime. Moreover, prompt notification from CNC machines to mobile phones, including cellular phones and PDA phones, can be automatically realized in emergencies.

A Survey on Admission Control Mechanisms for providing QoS in the IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜에서 QoS 제공을 위한 허가 제어 연구)

  • Lee, Kye-Sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.535-538
    • /
    • 2005
  • Wireless LANs based on the IEEE 802.11 standard are widely spread for use nowadays. Traffic which are conveyed over the WLANs change rapidly from normal data such a Email and Web pages, to multimedia data of high resolution video and voice. To meet QoS (Quality of Service) required by these multimedia traffic, the IEEE 802 committee recently has developed a new standard, IEEE 802.11e. IEEe 802.11.e contains two MAC mechanisms for providing QoS: EDCA(Enhanced Distributed Channel Access) and HCCA (HCF Controlled Channel Access). Using these standardized MAC mechanisms as a building platform, various admission control mechanisms can be combined to offer QoS gurantees for multimedia traffic. This paper surveys these research efforts.

  • PDF