• Title/Summary/Keyword: Wireless Communication

Search Result 7,100, Processing Time 0.033 seconds

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

Design and Implementation of Customized Protocol and Smartphone App for the All-in-One Sensor Device

  • Bang, Jong-ho;Lee, Song-Yeon;Paik, Jong-Ho
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • Social issues for environmental pollution are continuously increasing globally. Especially, Users require services to measure environmental factors in indoor and outdoor and manage related data effectively and conveniently. According to this demand, sensors that can measure environmental factors in indoor and outdoor have been developed. However, since one sensor is composed of independent module, the interface of output data from each sensor is different. To solve the problem, we propose a customized protocol for low-power short-range wireless communication between smartphone using Bluetooth and All-in-One sensor device board and analyze the performance of the proposed customized protocol by developing program for performance verification of interface with user smartphone through Bluetooth. In addition, we implement a smartphone application using proposed protocol.

Analysis and fabrication of a wearable antenna using conductive fibers (전도성 실 재질을 이용한 웨어러블 안테나의 제작 및 분석)

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2770-2776
    • /
    • 2015
  • The development of efficient wearable antennas is required to implement short range body-centric wireless communication links for various internet of thing applications. We present simulation and measurement results of conductive-fiber-based wearable antennas which can comfortably fabricated directly on usual clothing materials. The proposed antenna is a form of a rectangular patch antenna designed by weaving conductive fibers on a felt substrate. A full-wave electromagnetic simulation tool is used to investigate the antenna performance such as antenna impedance, resonant frequency, and radiation efficiency. Parametric studies show that the radiation efficiency increases from 67.5% to 70.4% by widening the gap between conductive fibers from 0.25mm to 3mm. This implies a wearable antenna with good radiation efficiency can be designed despite of less portion of conductive fibers on the antenna. The simulation results are also verified by measured results with fabricated antennas.

A Naming Application Model for Sensor Networks (센서 네트워크를 위한 네이밍 응용 모델)

  • Kim, Young-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3183-3192
    • /
    • 2009
  • The purpose of this paper is to introduce Naming application model for sensor networks. Currently, sensor networks comprised of sensor nodes have provided an application range which could not function before. However, unlike general network, current sensor networks are designed to cooperate with major wireless-capable sensor devices with limited resources. Thus, exporting/importing between individual sensor and current sensor networks is very inefficient and unstable. Attribute, schema and DIT(Directory Information Tree) must be designed for sensor network using SN LDAP application model in order to maintain transparency and provide constant service in a situation of data defect. With the system explained as above, Naming application model is made to manage SN Fuzzy Query. It shall be more efficient and stable structure as long as Naming application using a virtual equation in a certain environment with information collected from sensor node is provided. In this paper, I would like to introduce SN Fuzzy LDAP model for sensor network by quick Naming method. Also, naming application which is possible for fuzzy query in a certain environment based on the system will be proved.

Implement of Knocking diagnostic algorithm and design of OBD-II Diagnostic system S/W on common-rail engine (커먼레일 엔진에서 노킹 진단 알고리즘 구현 및 OBD-II 진단기 S/W 설계 방안)

  • Kim, Hwa-Seon;Jang, Seong-Jin;Nam, Jae-Hyun;Jang, Jong-Yug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2446-2452
    • /
    • 2012
  • In order to meet the recently enhanced emission standards at home and abroad, it is necessary to develop the CRDI ECU control algorithm that users can adjust fuel injection timing and amount in response to their needs. Therefore, this study developed the simulator for knocking analysis that enables knocking discrimination and engine balance correction applicable to the ECU exclusive to the industrial CRDI engine. The purpose of this study is to provide the driver-oriented diagnostic service that enable drivers to diagnose vehicles directly by developing diagnostic devices for vehicles with ths use of the results of the developed simulator for knocing analysis according to the OBD-II standards. For this purpose, this study aims to improve the fuel efficiency of vehicles by proposing the S/W design method of the OBD-II diagnosis device that can provide real-time communcations with the use of wired system and bluetooth module as a wireless system to send and recevice automobile fault diagnosis signal and sensor output signal, and to suggest an improvement for engine efficiency by minimizing the generation of harmful exhaust gas.

The Design and Implementation Navigation System For Visually Impaired Person (시각 장애인을 위한 Navigation System의 설계 및 구현)

  • Kong, Sung-Hun;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2702-2707
    • /
    • 2012
  • In the rapid growth of cities, road has heavy traffic and many buildings are under constructions. These kinds of environments make more difficulty for a person who is visually handicapped to walk comfortable. To alleviate the problem, we introduce Navigation System to help walking for Visually Impaired Person. It follows, service center give instant real time monitoring to visually impaired person for their convenient by this system. This Navigation System has GPS, Camera, Audio and Wi-Fi(wireless fidelity) available. It means that GPS location and Camera image information can be sent to service center by Wi-Fi network. To be specific, transmitted GPS location information enables service center to figure out the visually impaired person's whereabouts and mark the location on the map. By delivered Camera image information, service center monitors the visually impaired person's view. Also, they can offer live guidance to visually impaired person by equipped Audio with live talking. To sum up, Android based Portable Navigation System is a specialized navigation system that gives practical effect to realize more comfortable walking for visually impaired person.

Efficient Post-Quantum Secure Network Coding Signatures in the Standard Model

  • Xie, Dong;Peng, HaiPeng;Li, Lixiang;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2427-2445
    • /
    • 2016
  • In contrast to traditional "store-and-forward" routing mechanisms, network coding offers an elegant solution for achieving maximum network throughput. The core idea is that intermediate network nodes linearly combine received data packets so that the destination nodes can decode original files from some authenticated packets. Although network coding has many advantages, especially in wireless sensor network and peer-to-peer network, the encoding mechanism of intermediate nodes also results in some additional security issues. For a powerful adversary who can control arbitrary number of malicious network nodes and can eavesdrop on the entire network, cryptographic signature schemes provide undeniable authentication mechanisms for network nodes. However, with the development of quantum technologies, some existing network coding signature schemes based on some traditional number-theoretic primitives vulnerable to quantum cryptanalysis. In this paper we first present an efficient network coding signature scheme in the standard model using lattice theory, which can be viewed as the most promising tool for designing post-quantum cryptographic protocols. In the security proof, we propose a new method for generating a random lattice and the corresponding trapdoor, which may be used in other cryptographic protocols. Our scheme has many advantages, such as supporting multi-source networks, low computational complexity and low communication overhead.

A Mass-Processing Simulation Framework for Resource Management in Dense 5G-IoT Scenarios

  • Wang, Lusheng;Chang, Kun;Wang, Xiumin;Wei, Zhen;Hu, Qingxin;Kai, Caihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4122-4143
    • /
    • 2018
  • Because of the increment in network scale and test expenditure, simulators gradually become main tools for research on key problems of wireless networking, such as radio resource management (RRM) techniques. However, existing simulators are generally event-driven, causing unacceptably large simulation time owing to the tremendous number of events handled during a simulation. In this article, a mass-processing framework for RRM simulations is proposed for the scenarios with a massive amount of terminals of Internet of Things accessing 5G communication systems, which divides the time axis into RRM periods and each period into a number of mini-slots. Transmissions within the coverage of each access point are arranged into mini-slots based on the simulated RRM schemes, and mini-slots are almost fully occupied in dense scenarios. Because the sizes of matrices during this process are only decided by the fixed number of mini-slots in a period, the time expended for performance calculation is not affected by the number of terminals or packets. Therefore, by avoiding the event-driven process, the proposal can simulate dense scenarios in a quite limited time. By comparing with a classical event-driven simulator, NS2, we show the significant merits of our proposal on low time and memory costs.

Improvement of Pattern Oriented Software Architecture Design Approach with Empirical Design of USN Middleware (USN 미들웨어 설계사례를 통한 패턴지향 아키텍처 설계방법의 개선)

  • Kung, Sang-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.1-8
    • /
    • 2007
  • The Sensor Network enables many distributed systems to be unmanned and automated by using of diverse sensors as well as wireless communication technologies. One of major enabling technologies for the sensor network is the USN middleware which plays the role of collecting and analyzing of measurements of sensors and controlling of the environments. The paper deals with the fungus cultivating environment based on Sensor Networks. Especially, we focus on the design of USN middleware for the embedded system, and explain how to design software architecture in terms of architectural patterns. In this design process, the improvement of methodology for pattern-oriented architecture design is proposed and the quality attributes for the architecture design is newly classified and suggested for the reference of software architecture design.