• Title/Summary/Keyword: Wireless Body Sensor Networks

Search Result 53, Processing Time 0.016 seconds

ISRMC-MAC: Implementable Single-Radio, Multi-Channel MAC Protocol for WBANs

  • Cho, Kunryun;Jeon, Seokhee;Cho, Jinsung;Lee, Ben
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1052-1070
    • /
    • 2016
  • Wireless Body Area Networks (WBANs) have received a lot of attention as a promising technology for medical and healthcare applications. A WBAN should guarantee energy efficiency, data reliability, and low data latency because it uses tiny sensors that have limited energy and deals with medical data that needs to be timely and correctly transferred. To satisfy this requirement, many multi-radio multi-channel MAC protocols have been proposed, but these cannot be implemented on current off-the-shelf sensor nodes because they do not support multi-radio transceivers. Thus, recently single-radio multi-channel MAC protocols have been proposed; however, these methods are energy inefficient due to data duplication. This paper proposes a TDMA-based single-radio, multi-channel MAC protocol that uses the Unbalanced Star+Mesh topology to satisfy the requirements of WBANs. Our analytical analysis together experiments using real sensor nodes show that the proposed protocol outperforms existing methods in terms of energy efficiency, reliability, and low data latency.

A New Emergency-Handling Mechanism based on IEEE 802.15.4 for Health-Monitoring Applications

  • Ranjit, Jay Shree;Pudasaini, Subodh;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.406-423
    • /
    • 2014
  • The recent advances in wireless communication systems and semiconductor technologies are paving the way for new applications over wireless sensor networks. Health-monitoring application (HMA) is one such emerging technology that is focused on sensing and reporting human vital signs through the communication network comprising sensor devices in the vicinity of the human body. The sensed vital signs can be divided into two categories based on the importance and the frequency of occurrence: occasional emergency signs and regular normal signs. The occasional emergency signs are critical, so they have to be delivered by the specified deadlines, whereas the regular normal signs are non-critical and are only required to be delivered with best effort. Handling the occasional emergency sign is one of the most important attributes in HMA because a human life may depend on correct handling of the situation. That is why the underlying network protocol suite for HMA should ensure that the emergency signs will be reported in a timely manner. However, HMA based on IEEE 802.15.4 might not be able to do so owing to the lack of an appropriate emergency-handling mechanism. Hence, in this paper, we propose a new emergency-handling mechanism to reduce the emergency reporting delay in IEEE 802.15.4 through the modified superframe structure. A fraction of an inactive period is modified into three new periods called the emergency reporting period, emergency beacon period, and emergency transmission period, which are used opportunistically only for immediate emergency reporting and reliable data transmission. Extensive simulation is performed to evaluate the performance of the proposed scheme. The results reveal that the proposed scheme achieves improved latency and higher emergency packets delivery ratio compared with the conventional IEEE 802.15.4 MAC.

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.