• Title/Summary/Keyword: Wire spacer

Search Result 14, Processing Time 0.037 seconds

Numerical investigation on vortex behavior in wire-wrapped fuel assembly for a sodium fast reactor

  • Song, Min Seop;Jeong, Jae Ho;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • The wire-wrapped fuel bundle is an assembly design in a sodium-cooled fast reactor. A wire spacer is used to maintain a constant gap between rods and to enhance the mixing of coolants. The wire makes the flow complicated by creating a sweeping flow and vortex flow. The vortex affects the flow field and heat transfer inside the subchannels. However, studies on vortices in this geometry are limited. The purpose of this research is to investigate the vortex flow created in the wire-wrapped fuel bundle. For analysis, a RANS-based numerical analysis was conducted for a 37-pin geometry. The sensitivity study shows that simulation with the shear stress transport model is appropriate. For the case of Re of 37,100, the mechanisms of onset, periodicity, and rotational direction were analyzed. The vortex structures were reconstructed in a three-dimensional space. Vortices were periodically created in the interior subchannel three times for one wire rotation. In the edge subchannel, the largest vortex occurred. This large vortex structure blocked the swirl flow in the peripheral region. The small vortex formed in the corner subchannel was negligible. The results can help in understanding the flow field inside subchannels with sweeping flow and vortex structures.

The Study on Countermeasures of Electromagnetic Force by Three Phase Short-Circuit Test of Cable (케이블 삼상단락 실증시험을 통한 전자력 대책방안 검토)

  • Hong, Dong-Suk;Kim, Hae-Jun;Park, Sung-Min;Chang, Woo-Suk;Park, Heong-Suk;Jang, Tae-In;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.363_364
    • /
    • 2009
  • Even though underground transmission cable is an essential transmission method to supply stable power for downtown and population center, interaction of electromagnetic force from fault current is very large comparing to overhead transmission line due to restricted installation space such as tunnel, etc. and close consideration is required for it. This paper presents countermeasures to reduce and release the effect of electromagnetic force with rope binding and installation of spacer and describes its efficacy through three phase short-circuit test, which will be utilized as basic materials for improvement and development of cleat, hanger, etc. to reduce and release effect of electromagnetic force in the future.

  • PDF

Dynamic Modeling of Transmission Line Galloping Vibrations (송전선 갤러핑 진동에 대한 동적 모델링 연구)

  • Kwak, Moon K.;Koo, Jae-Ryang;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.518-522
    • /
    • 2014
  • This paper is concerned with the dynamic modeling of transmission line undergoing galloping vibrations. To this end, the kinetic and potential energies of a uniform wire vibrating in space are derived. The equations of motion suitable for numerical simulations are derived using the assumed mode method and Lagrange equation. The resulting equations of motion are expressed in matrix form. To cope with bundled transmission line, the spacer was modelled by a spring element. As a numerical example, a two-wire transmission line combined by spacers was considered. Natural vibration characteristics show that the in-plane vibrations of the transmission line appeared in low frequency range, which may lead to galloping.

  • PDF

Anions as Connectors for Higher Dimensions. Silver(I) Trifuoracetate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine

  • Kim, Yun-Ju;Yoo, Kyung-Ho;Park, Ki-Min;Hong, Jong-Ki;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1744-1748
    • /
    • 2002
  • Trifluoroacetate anion as a connector has been studied on $AgCF_3CO_2$ with 3,3'-$Py_2X$(X=O vs S) produces 1 : 1 adducts of [Ag($CF_3CO_2$)(3,3'-$Py_2X<$)]. Crystallographic characterization of [Ag($CF_3CO_2$)(3,3'-$Py_2X$)](monoclinic $P2_1$a=7.383(1)$\AA$b=19.801(3)$\AA$c=9.297(3)$\AA$,$\beta$=$100.26(2)^{\circ}$,V=1337.4(5) $\AA^3$, Z=2, R=0.0386) reveals that the 3,3'-$Py_2O$ spacer connects two silver ions to give a single strand and that the single strands are linked via the trifluoroacetate anions in an "up and down even-bridge" to give an elegant molecular grid. The framework of [$Ag(CF_3CO_2)(3,3'-Py_2X)$](monoclinic $P2_1/c$a=8.331(2)$\AA$b=14.010(2)$\AA$,c=11.926(3 $\AA$$\beta$=$93.70(2)^{\circ}$=1385.1(6)$\AA^3$, Z=4, R=0.0589) is a single-strand. The single strands are connected via the trifluoroacetate anions in a double-bridge, resulting in a typical molecular chicken-wire. The trifluoroacetate anion as a connector appears to be primarily associated with its moderately coordinating ability. Their structural features have been discussed based on the anion exchangeability. Thermal analyses indicate that the compounds are stable up to approximately $200^{\circ}C$.