• Title/Summary/Keyword: Wire coating

Search Result 113, Processing Time 0.028 seconds

An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels (열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰)

  • Lee, Sang-Jun;Yoo, Ui-Kyung;Lee, Young-Seog;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

Effects of Ni Coating on the Surface Characteristics of Drawed Stainless Steel Wire (인발가공된 스테인리스강선의 표면특성에 미치는 Ni코팅의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2003
  • The stainless steel wire requires good corrosion resistance and mechanical properties, such as drawing ability, combined with a high resistance to corrosion. For increasing drawing ability of stainless steel, Ni coating methods have been used in this study. However, there is no information on the electrochemical corrosion behavior of drawed wires after Ni coating. To investigate corrosion resistance and mechanical property of drawed wire, the characteristics of Ni coated wires have been determined by tensile strength tester, hardness tester, field emission scanning microscope, energy dispersive x-ray analysis and potentiodynamic method in 0.1 M HCl. The drawed stainless steel wires showed the strain-induced martensitic structure, whereas non-drawed stainless steel wire showed annealing twin in the matrix of austenitic structure. The hardness and tensile strength of drawed stainless steel wire were higer than that of non-drawed stainless steel wire. Electrochemical measurements showed that, in the case of drawed stainless steel o ire after Ni coating, the corrosion resistance and pitting potential increased compared with non-coated and drawed stainless steel wire due to decrease in the surface roughness.

Development of Teflon Coating Equipment Used in Medical Treatment (의료용 가이드 와이어의 테프론 코팅 장치 개발)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.344-349
    • /
    • 2018
  • This paper proposes a method of designing the main parameters of the Teflon coating equipment of a guide wire used in medical treatment. The proposed device was designed to be guided by a reel-to-reel method in which the guide wire performs all processes continuously, such as Teflon coating and heat treatment. At this time, the conveyed guide wire vibrates between the rollers, which affects the quality of the coating. Therefore, this paper proposes a dynamic equation of the guide wire to be transported in the longitudinal direction, and design parameters setting method of the feed speed and the interval of the roller supporting the wire is proposed to minimize the vibration amplitude of the guide wire during transport. The Teflon coating of the medical guide wire was carried out based on the developed coating equipment. The target coating thickness of the guide wire was set to less than $10{\mu}m$ in the circumferential direction, and the results were examined by optical microscopy.

Effects of TiN and ZrN Coating on Surface Characteristics of Orthodontic Wire (교정용 와이어의 표면특성에 미치는 TiN 및 ZrN 코팅영향)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.147-155
    • /
    • 2008
  • The dental orthodontic wire provides a good combination of strength, corrosion resistance and moderate cost. The purpose of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance and physical property of orthodontic wire using various instruments. Wires(round type and rectangular type) were used, respectively, for experiment. Ion plating was carried out for wire using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive X-ray spectroscopy(EDS), atomic force microscopy(AFM), vickers hardness tester, and electrochemical tester. The surface of TiN and ZrN coated wire was more smooth than that of other kinds of non-coated wire. TiN and ZrN coated surface showed higher hardness than that of non-coated surface. The corrosion potential of the TiN coated wire was comparatively high. The current density of TiN coated wire was smaller than that of non-coated wire in 0.9% NaCl solution. Pit nucleated at scratch of wire. The pitting corrosion resistance $|E_{pit}-E_{rep}|$ increased in the order of ZrN coated(300 mV), TiN coated(120 mV) and non-coated wire(0 mV).

Effect of Insulation Coating on Start Time of Linear Region for Transient Hot-wire Method (비정상열선법에서 열선의 절연코팅이 선형구간의 초기시점에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Hyun Jin;Kim, Kyu Han;Park, Yong-Jun;Jang, Seok Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1147-1152
    • /
    • 2013
  • In this study, the effect of an insulation coating on the start time of a linear region is theoretically investigated when an insulation-coated hot-wire is used for the transient hot-wire method (THWM). For this purpose, important parameters affecting the start time of the linear region are presented from an analytical solution of temperature-rise for an insulation-coated hot-wire. Furthermore, a critical time to ignore the influence of important parameters is studied. The theoretical results indicate that the effect of the insulation coating rapidly disappears with a decrease in the wire radius, coating thickness, thermal diffusivity of insulation material or an increase in the thermal conductivity of the insulation material. The results of this study will be helpful for selecting a proper start time of the linear region for the THWM using insulation-coated hot-wires.

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

The effect of coating wire on the performance of wire electrical discharge machining (코팅와이어가 와이어 방전가공 특성에 미치는 영향)

  • 임세환;김준현;김주현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

Effect of Tin Coating on the High Speed Seam Weldability of Thn Gage Sheet Steels (박판 강재의 고속 심 용접성에 미치는 Sn 도금의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.86-92
    • /
    • 1998
  • High speed wire seam weldability of tin coated thin gage sheet steels was investigated. Thickness and coating weight ranges of the test materials were 0.21~0.35mm and 1.1/1.1~2.8/11.2g/$m^2$, respectively. Test results indicated that the surface roughness value, Rz decreased as increasing the coating weight. The Rz was thought to be one of the important factors to influence the optimum welding condition range, $\triangle$Q. The $\triangle$Q showed close relationship with welding conditions such as welding pressure and travel speed. Higher welding pressure widened the $\triangle$Q while higher travel speed reduced the $\triangle$Q value. Results also demonstrated that tin coating weight should be optimized based on the weldability or the serviceability after welding. At th HAZ of sheet materials with thinner coating layer, tin depleted zone was produced since molten film of the coating material on the base metal agglomerated by the surface tension, which could result in reducing the corrosion resistance of the HAZ in the service environment.

  • PDF

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

OPTIMAL HOMOTOPY ASYMPTOTIC METHOD SOLUTION OF UNSTEADY SECOND GRADE FLUID IN WIRE COATING ANALYSIS

  • Shah, Rehan Ali;Islam, S.;Siddiqui, A.M.;Haroon, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.201-222
    • /
    • 2011
  • In the present work, the mathematical model of wire coating in a straight annular die is developed for unsteady second grade fluid in the form of partial differential equation. The Optimal Homotopy Asymptotic Method (OHAM) is applied for obtaining the solution of the model problem. This method provides us a suitable way to control the convergence of the series solution using the auxiliary constants which are optimally determined.