• Title/Summary/Keyword: Wiper Motor

Search Result 22, Processing Time 0.021 seconds

A Study of Interior Noise Reduction through In-Vehicle Measurement Test to the Windshield Wiper Motor System (차량용 윈드쉴드 와이퍼 모터의 단품 및 실차시험을 통한 소음 저감 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.862-869
    • /
    • 1998
  • The interior noise generated by the windshield wiper system including a wiper motor, the motor mountings and linkages is considered as a structure-borne noise. The structureborne noise is closely related with the system vibration which was transmitted into interior cabin through the car body. In this study, the frequency characteristics of vibration in the wiper motor system were first identified through the frequency analysis. Then effects of the wiper motor mountings and linkages on the vehicle interior noise were studied through in-vehicle measurements. Finally a possibility of noise reduction at a certain frequency was revealed from the study.

  • PDF

The Development of the Korean Motor Vehicle Safety Standards for Windscreen Wiper Systems of Motorcycles (이륜자동차 창닦이기장치 등의 국내안전기준 개발)

  • Han, Kyeonghee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • Two-wheeled motorcycles rarely use windscreen wipers in general. However, if two or more wheeled motorcycles with upper body employ windscreen wiper systems, clear visibility should be ensured regardless of weather conditions. The windscreen wiper systems include washers, defrosting, and demisting. As demands for the personal mobility are rapidly increased, the related global safety standards for motorcycles with upper body have been revised accordingly. Currently only EU regulations issue the provisions of windscreen wiper systems for L-category vehicles, which characterize two or more wheeled motorcycles. Therefore, in order to agree with international safety standards, it is necessary to revise KMVSS (Korea Motor Vehicle Safety Standards) for motorcycles. Here, KMVSS regarding windscreen wiper systems for motorcycles are studied considering the EU regulations. It is expected that the findings in this study are useful for future amendment of KMVSS.

Numerical Study on Aerodynamic Lift on Windshield Wiper of High-Speed Passenger Vehicles (자동차 고속 주행시 와이퍼 부상현상에 대한 수치해석 연구)

  • Lee, Seung-Ho;Lee, Sung-Won;Hur, Nahm-Keon;Choi, Woo-Nyoung;Sul, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • In the present study, a three-dimensional CFD simulation on aerodynamic lift acting on windshield wiper blades was performed to improve the wiping performance of a vehicle moving at a high speed. To predict the reliable flow characteristics around the windshield wiper system, the computational domain included the full vehicle model with detailed geometry of wiper blades in the wind tunnel. From the numerical results, the drag and lift coefficients of wiper blade were obtained for the performance of windshield wiper. With this aerodynamic characteristics of windshield wiper, the effects of wiping angles and hood tip angle on the wiping performance of the windshield wiper were evaluated.

Reliability Insurance Rate-Making for Wiper Motors

  • Hong, Yeon-Woong;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • In this paper, we calculate the premium rate of reliability insurance policy for wiper motors under the assumption of Weibull physics of failure. We also describe the performance factors which have an effect on failure characteristics of wiper motors. The maximum likelihood estimates of shape parameter and scale parameter are obtained by using interval censored real data of sample sizes 6 using MINITAB.

  • PDF

Reliability Assessment Criteria of Wiper Motor for Automobiles (자동차용 와이퍼 모터의 신뢰성평가기준)

  • Choi, Man-Yeop;Shin, Wae-Gyeong;Jeong, Hai-Sung;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.3
    • /
    • pp.195-218
    • /
    • 2009
  • Wiper motors are used in every automobile. They are exposed to a very diverse environment and consists of several components and, therefore needs careful approach to the enhancement and assessment of reliability of the item. In this article reliability standards for wiper motors are established in terms of quality certification test and failure rate test.

  • PDF

Strength Analysis of Aluminum Alloy Window Wiper Manufactured by Die Casting (다이캐스팅용 알루미늄 합금으로 제작된 윈도우 와이퍼의 강도 해석)

  • Cho, Seunghyun;Lee, Jeungho;Kim, Hangoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • This study analyzed the amount of displacement of window wipers according to pressure by using finite element analysis (FEA) with KS standards for aluminum alloy window wipers manufactured by die-casting method. The product design was changed over four steps considering the die-casting process to achieve strength greater than that of the conventional steel window wiper. According to the FEA results, the strength of final aluminum alloy window wiper improved by 55% over that of a steel window wiper, and the weight of the former was less by approximately 45%. Therefore, there is the possibility of module downsizing for driving motor capacity. Further, the cost competitiveness improved, and the manufacturing process of aluminum alloy window wipers was simplified.

Optimum Design of Wiper Mechanisms Consisting of Two RSSR Mechanisms (두개의 RSSR 기구로 이루어진 와이퍼기구의 최적설계)

  • 최진호;최동훈;서진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1573-1580
    • /
    • 1995
  • In this paper, an optimization program for the design of wiper mechanisms is developed to minimize jerky motion while satisfying design constraints on kinematic and torque performances, mobility condition, and packaging. The lengths/orientations of the links and the position of a driving motor are selected as the design variables. In our optimum design program for wiper mechanisms, an optimization module interacts with an analysis module which calculates kinematic and force/torque properties, until convergence. The optimization results of a particular wiper mechanism are presented to illustrate the effectiveness of the program developed.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

An Analysis about the Behavior of the Wiper Blade Including Incompressibility (비압축성을 고려한 와이퍼 블레이드의 거동 해석)

  • Chung, Won-Sun;Song, Hyun-Seok;Park, Tae-Won;Jung, Sung-Pil;Kim, Wook-Hyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.