• 제목/요약/키워드: Winters Multiplicative Model

검색결과 7건 처리시간 0.02초

Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측 (Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model)

  • 양문희;임상규
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

시계열모형에 의한 전력판매량 예측 (Prediction of Electricity Sales by Time Series Modelling)

  • 손영숙
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.419-430
    • /
    • 2014
  • 전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.

코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구 (A Study on Demand Forecasting Change of Korea's Imported Wine Market after COVID-19 Pandemic)

  • 김지형
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.189-200
    • /
    • 2023
  • COVID-19 팬데믹 초기에 한국의 와인시장은 다른 나라들과 마찬가지로 상당히 위축되어 있었다. 하지만 팬데믹 직후 한국의 수입 와인소비는 2020년 한 해 69.6%나 증가하였다. 이는 해외 여행금지로 와인이 국내에서만 소비되고 보복 소비와 홈술로 인해 고가 와인의 판매가 증가한 것에 기인한다. 그러나 코로나가 끝난 2022년부터 한국의 와인시장은 큰 폭으로 다시 위축되기 시작하였다. 그러므로 본 연구는 와인과 관련된 사업자들에게 향후 10년 뒤, 2032년까지 수입와인 시장의 수요예측을 통해 중장기 사업계획 수립에 유용한 정보를 제공하고자 한다. 본 연구는 2020년 1월부터 2023년 9월까지 한국무역협회가 제공한 95개의 시계열 데이터를 사용하였다. 모형의 정확도는 MAPE 값을 기초로 시험하였고, 수입와인의 전체 금액 예측은 ARIMA 모형, 전체 중량의 예측은 Winters 승법 모형을 사용해 계산하였다. 2032년까지 수입 와인시장의 전체 금액을 예측한 ARIMA 모형(MAPE=10.56%)은 와인시장 금액의 규모를 USD $1,023,619, CAGR=6.22%로 예측하였으며, 이는 2023년 대비 101% 증가한 규모이다. 반면에 중량은 Winters 승법모형(MAPE=10.03%)을 사용하여 계산하였으며, 2032년 중량은 64,691,329톤으로 CAGR=-0.61% 하락할 것으로 예측하였고, 이는 2023년 대비 15.12% 성장한 것이다. 결론적으로 한국 수입와인 시장은 최근의 하락세에도 불구하고 꾸준히 성장할 것이며, 고급 와인시장이 이 증가의 대부분을 차지할 것으로 보인다.

Prediction of the Corona 19's Domestic Internet and Mobile Shopping Transaction Amount

  • JEONG, Dong-Bin
    • 융합경영연구
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Purpose: In this work, we examine several time series models to predict internet and mobile transaction amount in South Korea, whereas Jeong (2020) has obtained the optimal forecasts for online shopping transaction amount by using time series models. Additionally, optimal forecasts based on the model considered can be calculated and applied to the Corona 19 situation. Research design, data, and methodology: The data are extracted from the online shopping trend survey of the National Statistical Office, and homogeneous and comparable in size based on 46 realizations sampled from January 2007 to October 2020. To achieve the goal of this work, both multiplicative ARIMA model and Holt-Winters Multiplicative seasonality method are taken into account. In addition, goodness-of-fit measures are used as crucial tools of the appropriate construction of forecasting model. Results: All of the optimal forecasts for the next 12 months for two online shopping transactions maintain a pattern in which the slope increases linearly and steadily with a fixed seasonal change that has been subjected to seasonal fluctuations. Conclusions: It can be confirmed that the mobile shopping transactions is much larger than the internet shopping transactions for the increase in trend and seasonality in the future.

연 최대 냉방부하의 간접추정 방법론에 관한 연구 (A Study on Indirect Estimating Methods for Yearly Maximum Cooling Load)

  • 양문희
    • 산업공학
    • /
    • 제16권1호
    • /
    • pp.16-26
    • /
    • 2003
  • In Korea, cooling power load, which occupies about 20% of peak load in 2000 and fluctuates depending on the popular usage of air conditioning systems, has been recently the focus of the load management. The first work of KEPCO (Korea Electric Power Corporation) to regulate cooling load as low as possible was to estimate its approximate scale and to develop the indirect methods to estimate it from the available time series data for the average hourly loads. However, KEPCO would like to have their methods improved both theoretically and practically. In this paper, we analyze their current indirect methods and detect their faults to design better indirect estimation methods. Under one of the assumptions of "no cooling load in April or May", the linear relationship between basic loads and GDP's, and the normalized seasonal factors of the Winters' multiplicative seasonal model, we provide ten indirect estimation methods in total and suggest the estimated cooling load(1988-1999) based on our various indirect methods.

ARIMA 모형을 이용한 호텔 연회의 매출액 예측에 관한 연구 (Study on Forecasting Hotel Banquet Revenue by Utilizing ARIMA Model)

  • 조성호;장세준
    • 한국조리학회지
    • /
    • 제15권2호
    • /
    • pp.231-242
    • /
    • 2009
  • 호텔 연회에서 가장 중요한 정보 중 하나는 매출액 자료이다. 매출액 예측은 비용을 절감시키고 인력 배분의 효율성을 증가시키고 급변하는 환경에서 경쟁하는 능력을 향상시키는 데 도움이 되는 정보를 제공한다. 본 연구는 국내외 연구에서 적합한 예측모형으로 평가되고 있는 ARIMA 모형을 이용하여 호텔 연회장의 매출액을 예측하였다. 분석을 위해서 사용한 자료는 서울 소재 GI 호텔 연회장의 월별 매출액 자료를 사용하였으며, 분석 결과 SARIMA(2,1,3)(0,1,1)가 최종적으로 추정되었다. 본 연구의 시사점은 국내외 연구에서 적합한 예측모형으로 평가되고 있는 ARIMA 모델을 호텔 연회장의 월별 매출액 자료에 적용하였다는 점과 호텔 연회 실무자들에게 참고자료로 사용할 수 있는 유용한 정보를 제공하였다는 점을 들 수 있다.

  • PDF

시계열 모형을 이용한 범죄예측 사례연구 (A Case Study on Crime Prediction using Time Series Models)

  • 주일엽
    • 시큐리티연구
    • /
    • 제30호
    • /
    • pp.139-169
    • /
    • 2012
  • 본 연구는 살인, 강도, 강간, 절도, 폭력 등 주요 범죄를 예측할 수 있는 시계열 모형을 도출하고 이를 이용한 주요 범죄의 발생 전망을 파악하여 범죄 발생에 대한 과학적인 치안정책 수립에 기여하는데 그 목적이 있다. 이와 같은 목적을 달성하기 위하여 2002년부터 2010년까지의 살인, 강도, 강간, 절도, 폭력 등 주요범죄에 대한 월별 발생건수를 IBM PASW(SPSS) 19.0을 사용하여 주요 범죄의 시계열 예측모형을 규명하기 위한 시계열 모형생성(C), 주요 범죄의 시계열 예측모형에 대한 정확도 규명을 위한 시계열 모형생성(C) 및 시계열 순차도표(N)를 실시하였다. 이와 같은 연구목적과 연구방법을 통하여 도출한 연구결과는 다음과 같다. 첫째, 살인, 강도, 강간, 절도, 폭력 등 주요 범죄에 대한 시계열 예측모형은 각각 단순계절, Winters 승법, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0)(0,1,1), 단순계절로 나타났다. 둘째, 살인, 강도, 강간, 절도, 폭력 등 주요 범죄에 대하여 시계열 예측모형을 이용한 주요 범죄에 대한 단기적 발생 전망이 가능한 것으로 나타났다. 이러한 연구결과를 토대로 범죄 발생에 대한 지속적인 시계열 예측모형 제시, 분기별, 연도별 범죄 발생건수를 기초로 하는 중 장기 시계열 예측모형에 대한 관심이 요구된다.

  • PDF