• Title/Summary/Keyword: Winter Precipitation

Search Result 319, Processing Time 0.026 seconds

Temporal and Spatial Variability of Precipitation and Evaporation over the Tropical Ocean

  • Yoo, Jung-Moon;Lee, Hyun-A
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • Temporal and spatial variability of precipitation (P), evaporation (E), and moisture balance (P-E; precipitation minus evaporation) has been investigated over the tropical ocean during the period from January 1998 to July 2001. Our data were analyzed by the EOF method using the satellite P and E observations made by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the Special Sensor Microwave/Imager (SSM/I). This analysis has been performed for two three-year periods as follow; The first period which includes the El Ni${\tilde{n}}$o in early 1998 ranges from January 1998 to December 2000, and the second period which includes the La Ni${\tilde{n}}$o events in the early 1999 and 2000 (without El Ni${\tilde{n}}$o) ranges from August 1998 to July 2001. The areas of maxima and high variability in the precipitation and in the P-E were displaced from the tropical western Pacific and the ITCZ during the La Ni${\tilde{n}}$o to the tropical middle Pacific during the El Ni${\tilde{n}}$o, consistent with those in previous P studies. Their variations near the Korean Peninsula seem to exhibit a weakly positive correlation with that in the tropical Pacific during the El Ni${\tilde{n}}$o. The evaporation, out of phase with the precipitation, was reduced in the tropical western Pacific due to humid condition in boreal summer, but intensified in the Kuroshio and Gulf currents due to windy condition in winter. The P-E variability was determined mainly by the precipitation of which the variability was more localized but higher by 2-3 times than that of evaporation. Except for the ITCZ (0-10$^{\circ}$N), evaporation was found to dominate precipitation by ${\sim}$2 mm/day over the tropical Pacific. Annual and seasonal variations of P, E, and P-E were discussed.

The Impact of Climate Change on the Trends of Precipitation Effectiveness Ratio and Runoff Data in South Korea (기후변화에 따른 우리나라 강수효율 및 유출량의 변화특성 분석)

  • Kim, Jong-Pil;Kim, Gwang-Seob
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.683-694
    • /
    • 2011
  • To analyze the regional impact of air temperature increase and precipitation variation on water resources, the variability of precipitation-effectiveness (P-E) ratio which is estimated using precipitation and air temperature data of 59 weather stations operated by the Korean Meteorological Administration (KMA) during 1973~2009 was analyzed. Also runoff data resulting from the Precipitation-Runoff Modelling System (PRMS) modelling were analyzed during 1966~2007. The overall spatio-temporal variability of P-E ratio and runoff data in South Korea is corresponding to the variability of precipitation amount. However some region shows that the P-E ratio decreases even though the trend of precipitation amount increases which may be caused by the air temperature increase. Runoff trend is similar to that of P-E ratio. Precipitation and P-E ratio have decreased all seasons except summer season and it means the reduction of available water resources during those seasons. These variability should be reflected in the spring, fall, and winter water supply strategy.

Bayesian analysis of adjustment function for wind-induced loss of precipitation (바람의 영향에 의한 관측 강우 손실에 대한 베이지안 모형 분석)

  • Park, Yeongwoo;Kim, Young Min;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.483-492
    • /
    • 2017
  • Precipitation is one of key components in hydrological modeling and water balance studies. A comprehensive, optimized and sustainable water balance monitoring requires the availability of accurate precipitation data. The amount of precipitation measured in a gauge is less than the actual precipitation reaching the ground. The objective of this study is to determine the wind-induced under-catch of solid precipitation and develop a continuous adjustment function for measurements of all types of winter precipitation (from rain to dry snow), which can be used for operational measurements based on data available at standard automatic weather stations. This study provides Bayesian analysis for the systematic structure of catch ratio in precipitation measurement.

Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model (WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향)

  • Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

Numerical Simulation of the Asian Monsoon for the Mid-Holocene Using a Numerical Model (수치모델을 이용한 홀로세 중기의 아시아 몬순순환 변화 연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Park, Yoo-Min;Suk, Bong-Chool
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • The change in global climate and Asian monsoon patterns during the mid-Holocene, 6000 years before present (6 ka), is simulated by a climate model at spectral truncations of T170 with 18 vertical layers, corresponding to grid-cell sizes of roughly 75km. The present simulation is forced with the observed monthly data of sea surface temperatures, and the specified concentration of atmospheric carbon dioxide, while in the mid-Holocene experiment, orbital parameters such as obliquity, precession, and eccentricity are changed to the 6ka conditions. Under such conditions, the precipitation associated with the summer monsoon is enhanced over a wider zonal band from the Middle East to Southeast Asia, while no significant alteration takes Place in winter. The monsoonal wind also increases over the Arabian Sea, showing the enhanced southwesterly wind during summer and northeasterly wind during winter. Overall, the showing of the Asian monsoon is enhanced during the mid-Holocene, especially in summer, which is consistent with the proxy estimates and other previous model simulations.

The Analysis of Water Quality and Suspended Solids Effects against Transparency of Major Artificial Reservoirs in Korea. (우리나라 주요 인공호의 투명도에 대한 수질 및 수중 부유물 영향 분석)

  • Kong, Keon-Hwa;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.221-231
    • /
    • 2009
  • This study was carried out to comparatively identify characteristics of turbid water influence in Imha Reservoir, Soyang Reservoir, and Daecheong Reservoir in Korea. We used 3 years dataset from 2002 to 2004 and analyzed seasonal water quality characteristics, particular parameters in association with turbidity, and light transparency to figure out the trends. All parameters to be used in the study were total phosphate (TP), total nitrogen (TN), chlorophyll-${\alpha}$ (Chl), suspended solids (SS), Secchi depth (SD), conductivity, and verticallight extinction coefficienct($K_d$), euphotic zone ($Z_{eu}$), and critical depth ($Z_p$). All parameters depend on season and watershed. Suspended solids from Soyang Reservoir were usually caused by TP, mainly related to living wastes and agricultures in upper stream. Daecheong Reservoir was influenced by organic matters related to large phytoplankton biomass in summer and inorganic suspended solids by nutrients in the winter. However, in case of Imha Reservoir, turbid water, consisted in silt and clay through heavy precipitation remained in the waterbody to decrease water transparency along with TP and caused the light limitation in winter. Overall results suggest that it was necessary to establish various management programs because the reasons occurring turbidity were varied according to the reservoir circumstances.

Synoptic Climotological Characteristics of Winter Droughts in Korea (한국의 동계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.4
    • /
    • pp.429-439
    • /
    • 2005
  • The propose of this study is to identify distributional characteristics of winter droughts through occurrence frequencies and to analyze synoptic characteristics on the sea level pressure fields and 500hPa levels in Korea. The regional distributions of winter droughts in occurrence frequency vary according to the monthly regional distributions of the variabilities of precipitation in Korea. In January and December, the eastern parts of Korea where the variabilities of precipitation show high, have high rate of drought frequencies, while the western parts have low rate of it. It means that the regional distribution of the drought frequencies in January and December shows the east-high and west-low pattern, In February the frequencies show the north-high and south-low pattern. In the distributions of the sea-level pressure and 500hPa level height anomalies, the positive anomalies appear around Korean Peninsula and Siberian high area, the negative anomalies on the Aleutian low area and the western parts of North Pacific Ocean during the drought period in January and February. The droughts appear when the inflow of warm and humid air from the south eastern parts blocked by the prevailing pressure patterns of the west-high and east-low. Therefore, the zonal wind of the Korean Peninsula is strong. The droughts of December reflect not only low frequencies of cyclone occurrence, also small inflow of warm and humid air from the southern parts stemming from positive anomalies over whole middle latitude of eastern parts of Asia including Korean Peninsula.

  • PDF

On the Change of Extreme Weather Event using Extreme Indices (극한지수를 이용한 극한 기상사상의 변화 분석)

  • Kim, Bo Kyung;Kim, Byung Sik;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.41-53
    • /
    • 2008
  • Unprecedented weather phenomena are occurring because of climate change: extreme heavy rains, heat waves, and severe rain storms after the rainy season. Recently, the frequency of these abnormal phenomena has increased. However, regular pattern or cycles cannot be found. Analysis of annual data or annual average data, which has been established a research method of climate change, should be applied to find frequency and tendencies of extreme climate events. In this paper, extreme indicators of precipitation and temperature marked by objectivity and consistency were established to analyze data collected by 66 observatories throughout Korea operated by the Meteorological Administration. To assess the statistical significance of the data, linear regression and Kendall-Tau method were applied for statistical diagnosis. The indicators were analyzed to find tendencies. The analysis revealed that an increase of precipitation along with a decrease of the number of rainy days. A seasonal trend was also found: precipitation rate and the heavy rainfall threshold increased to a greater extent in the summer(June-August) than in the winter (September-November). In the meanwhile, a tendency of temperature increase was more prominent in the winter (December-February) than in the summer (June-August). In general, this phenomenon was more widespread in inland areas than in coastal areas. Furthermore, the number of winter frost days diminished throughout Korea. As was mentioned in the literature, the progression of climate change has influenced the increase of temperature in the winter.

Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events (영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성)

  • Kim, Ji-Eon;Kwon, Tae-Yong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.

East Asian Precipitation and Circulation Response to the Madden-Julian Oscillation (매든-줄리안 진동의 위상에 따른 동아시아 지역의 강수와 순환의 변동성)

  • Han, Sang-Dae;Seo, Kyong-Hwan
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.282-293
    • /
    • 2009
  • This study examines the effects of the Madden-Julian oscillation (MJO) or the Intraseasonal Oscillation (ISO) on precipitation, temperature and circulation anomalies over East Asia according to the eight different MJO phases during the winter and summer seasons. A nonlinear response appears the wintertime precipitation pattern during the phase of 3 (where the MJO center is located over the Eastern Indian Ocean) and 8 (where the MJO center is located over the Western Hemisphere) over the Korean Peninsula. That is, for these phases, the positive precipitation anomalies appear for the MJO intensity less than 2 standard deviations while the negative precipitation anomalies appear in the case of the MJO intensity greater than 2 standard deviations. The negative precipitation anomaly in the latter case is duandard d stronger anomalous anticyclone formed over the Korean Peninsula and cold and dry advection by northerly winds. The response of precipitation and circulation to the boreal summer ISO is also investigated.