• 제목/요약/키워드: Winter Precipitation

검색결과 317건 처리시간 0.022초

울산지역 상수원 호수 환경에 따른 식물플랑크톤 분포 (Phytoplankton Community, Pollution Sources and Water Quality of Drinking Water Lakes in Ulsan)

  • 이혜진;탁보미
    • 한국환경과학회지
    • /
    • 제21권11호
    • /
    • pp.1349-1360
    • /
    • 2012
  • This study presented the phytoplankton communities of the three lakes (Sayeon, Daeam, Hoeya ) using for drinking water in the Ulsan reservoir. The water storage of the Lake Sayeon, Daeam and Hoeya were 25, 13, 21 million ton respectively and most of which were being utilized for industrial and residential purposes. The total precipitation of the Ulsan region in 2010 was 1,162 mm, decreasing 10 % from 1,275 mm of the annual. As for pollutant loads, BOD and TN discharge loads of Daeam was the highest with 3,277 kg/day, 1,931 kg/day and 90 % of them were came from non-point pollutant sources. TP discharge loads showed the highest in the lake Hoeya with 643 kg/day and 97 % of them were came from point sources as household, industry and livestock. We assessed water quality of the lake Sayeon, Daeam and Hoeya using 17 variables. The water quality assessment found that the lake Daeam met the fourth to fifth grade because of high concentration of COD, SS and chlorophyll-a. Eutrophication assessment was conducted by revised Carlson's Index (TSIm, Aizaki) and found that Lake Daeam was more eutrophicated than the other two lakes all the year through as for chlorophyll-a, transparency and the total phosphorus (TP). A total of 95~111 phytoplankton species were identified from the three lake samples. Among them, the largest number of species were Chlorophyceae with 35~51, followed by Bacillariophyceae with 36~45, Cyanophyceae with 9~11, and Cryptophyceae with 6~9 species. The total cell number of phytoplankton was the highest in February (15,254 cells/mL) with Bacillariophyceae in the lake Daeam and the seasonal succession shows that Bacillariophyceae (Stephanodiscus spp.) in the spring, Cyanophyceae (Anabaena spp.) in the summer and the autumn, Bacillariophyceae (Stephanodiscus spp.) in the winter.

Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제34권4호
    • /
    • pp.411-423
    • /
    • 2011
  • This study was conducted to quantify soil $CO_2$ efflux using the continuous measurement method and to examine the applicability of an automatic continuous measurement system in a Korean deciduous broad-leaved forest. Soil respiration rate (Rs) was assessed through continuous measurements during the 2004-2005 full growing seasons using an automatic opening/closing chamber system in sections of a Gwangneung temperate deciduous forest, Korea. The study site was an old-growth natural mixed deciduous forest approximately 80 years old. For each full growth season, the annual Rs, which had a gap that was filled with data using an exponential function derived from soil temperature (Ts) at 5-cm depth, and Rs values collected in each season were 2,738.1 g $CO_2$ $m^{-2}y^{-1}$ in 2004 and 3,355.1 g $CO_2$ $m^{-2}y^{-1}$ in 2005. However, the diurnal variation in Rs showed stronger correlations with Ts (r = 0.91, P < 0.001 in 2004, r = 0.87, P < 0.001 in 2005) and air temperature (Ta) (r = 0.84, P < 0.001 in 2004, r = 0.79, P < 0.001 in 2005) than with deep Ts during the spring season. However, the temperature functions derived from the Ts at various depths of 0, -2, -5, -10, and -20 cm revealed that the correlation coefficient decreased with increasing soil depth in the spring season, whereas it increased in the summer. Rs showed a weak correlation with precipitation (r = 0.25, P < 0.01) and soil water content (r = 0.28, P < 0.05). Additionally, the diurnal change in Rs revealed a higher correlation with Ta than that of Ts. The $Q_{10}$ values from spring to winter were calculated from each season's dataset and were 3.2, 1.5, 7.4, and 2.7 in 2004 and 6.0, 3.1, 3.0, and 2.6 in 2005; thus, showing high fluctuation within each season. The applicability of an automatic continuous system was demonstrated for collecting a high resolution soil $CO_2$ efflux dataset under various environmental conditions.

METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화 (Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization)

  • 임한철;변영화;박수희;권원태
    • 대기
    • /
    • 제19권2호
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교 (Comparison of light-absorption properties of aerosols observed in East and South Asia)

  • 이혜정;김상우;윤순창;이시혜;김지형
    • 대기
    • /
    • 제21권3호
    • /
    • pp.301-309
    • /
    • 2011
  • In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.

서로 다른 두 유형의 엘니뇨와 동아시아 인근 해역 표층 온도 상관성 연구 (Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Niño)

  • 윤진희;예상욱
    • Ocean and Polar Research
    • /
    • 제31권1호
    • /
    • pp.51-61
    • /
    • 2009
  • In this study we define the two different types of El $Ni{\tilde{n}}o$, i.e., the eastern Pacific El $Ni{\tilde{n}}o$ (i.e., EP-El $Ni{\tilde{n}}o$) versus the central Pacific El $Ni{\tilde{n}}o$ (i.e., CP-El $Ni{\tilde{n}}o$), during the boreal summer (June-July-August, JJA) and winter (December-January-February, DJF) using the two NINO indices in the tropical Pacific. The two different types of El $Ni{\tilde{n}}o$ significantly differ in terms of the location of the maximum anomalous sea surface temperature (SST) in the tropical Pacific. The CP-El $Ni{\tilde{n}}o$ has been observed more frequently during recent decades compared to the EP-El $Ni{\tilde{n}}o$. In addition, our analysis indicates that the statistics of CP-El $Ni{\tilde{n}}o$ during JJA is closely associated with the warming trend in the central equatorial Pacific. We also examine the different responses of the East Asian marginal SST to the two types of El $Ni{\tilde{n}}o$ during JJA and DJF. The CP-El $Ni{\tilde{n}}o$ during both JJA and DJF is concurrent with warm SST anomalies around the Korean Peninsula including the East China Sea, which is in contrast to the EP-El $Ni{\tilde{n}}o$. Such different responses are associated with the difference in tropics/mid-latitude teleconnections via atmosphere between the two types of El $Ni{\tilde{n}}o$. Furthermore, our results indicate that atmospheric diabatic forcing in relation to the precipitation variability is different in the tropical Pacific between the EP-El $Ni{\tilde{n}}o$ and the CP-El $Ni{\tilde{n}}o$.

기후변화에 따른 대청호 유역의 물 순환 및 토양 유실량 영향 (Impact of Climate Change on Water Cycle and Soil Loss in Daecheong Reservoir Watershed)

  • 예령;정세웅;오동근;윤성완
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.821-831
    • /
    • 2009
  • The study was aimed to assess the expected impact of climate change on the water cycle and soil losses in Daecheong Reservoir watershed, Korea using the Soil and Water Assessment Tool (SWAT) that was validated for the watershed in a previous study. Future climate data including precipitation, temperature and humidity generated by introducing a regional climate model (Mesoscale Model Version 5, MM5) to dynamically downscale global circulation model (European Centre Hamburg Model Version 4, ECHAM4) were used to simulate the hydrological responses and soil erosion processes in the future 100 years (2001~2100) under the Special Report on Emissions Scenario (SRES) A1B. The results indicated that the climate change may increase in the amount of surface runoff and thereby sediment load to the reservoir. Spatially, the impact was relatively more significant in the subbasin Bocheongcheon because of its lower occupation rate of forest land compared to other subbasins. Seasonally, the increase of surface runoff and soil losses was more significant during late summer and fall season when both flood control and turbidity flow control are necessary for the reservoir and downstream. The occurrence of extreme turbidity flow events during these period is more vulnerable to reservoir operation because the suspended solids that remained water column can be resuspended by vertical mixing during winter turnover period. The study results provide useful information for the development of adaptive management strategy for the reservoir to cope with the expected impact of future climate change.

산성강하물의 침착량과 동태 해명에 관한 연구 - 필터팩을 이용한 춘천과 서울의 건성강하물의 농도 측정 (A Study on the Behavior and Deposition of Acid Precipitation-Measurement of Dry Deposition in Chunchon and Seoul by Using Filter Pack Method)

  • 김만구;박기준;강미희;황훈;이보경;이동수
    • 한국대기환경학회지
    • /
    • 제15권1호
    • /
    • pp.53-61
    • /
    • 1999
  • Acid aerosol and gas concentrations ($SO_4^{2-}$, $NO_3^-$, $HNO_3$, $SO_2$, and $NH_3$) were measured at Chunchon and Seoul, Korea using filter pack method during one year from October 1996 to september 1997. The samples were collected during 24 hours every Wednesday in a week from 10 A.M. with 10$\ell$/min of sample flow. Concentration of $HNO_3$, $SO_2$ and $NH_3$ gases showed typical seasonal variation. The $HNO_3$ showed the highest in summer and annual mean concentrations were 0.42 ppb and 0.57 ppb at Chunchon and Seoul, respectively. The $SO_2$ showed the highest in winter and annual mean concentration was 5.59 ppb at Chunchon. The $NH_3$ showed the highest in early summer and annual mean concentration were 5.15 ppb and 6.28 ppb at Chunchon and Seoul, respectively.

  • PDF

중권역 대표지점의 목표수질 달성도 평가 - TOC를 중심으로 - (Evaluation of Attainment Ratio on Water Quality Goal of the Mid-watershed Representative Station)

  • 이재호;이승현;이수형;이재관
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.525-530
    • /
    • 2017
  • The attainment ratios of the water quality goals of the 114 mid-watershed representative stations, examined during the period2011 to 2015, were evaluated in the study. Of the four major river basins, the attainment ratio on water quality goal of the Geum River basin turned out to be the lowest. As a result of formal evaluation of the attainment ratios of BOD, COD and TOC, it was found that the attainment ratio of COD was much lower than that of BOD and TOC (I a circumstance thought to be caused by the higher COD/BOD and COD/TOC ratios of the water quality of the river than those of the environmental water quality standard). As well, higher COD/BOD and COD/TOC of wastewater discharged from point and non-point sources (other than those of the environmental water quality standards) might possibly represent one of the reasons. We also compared attainment ratio between the main stream and tributaries, which indicated that the higher attainment ratio was present in the main stream. The attainment ratio is also documented as more significant in the winter season than the summer season, possibly due to the contribution of non-point pollutants swept in by rain during the summer season during documented periods of high precipitation. Thus, water quality management in summer season and improvement of water quality of the tributaries might be important as a means of increasing attainment ratio on water quality goal.

광릉수목원 혼합림에서 복사 에너지의 계절 변화 특성 (Characteristics of the Seasonal Variation of the Radiation in a Mixed Forest at Kwangneung Arboretum)

  • 김연희;조경숙;김현탁;엄향희;최병철
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.285-296
    • /
    • 2003
  • The measurement of the radiation energy, trunk temperature, leaf area index (LAI), air temperature, vapor pres-sure, and precipitation has been conducted under a mixed forest at Kwangneung Arboretum during the period of 2001. Characteristics of the diurnal and seasonal variation of the radiative energy were investigated. The aerodynamic roughness length was determined as about 1.6 m and the mean albedo was about 0.1 The downward short-wave radiation was linearly correlated with the net radiation and its correlation coefficient was about 0.96. From this linear relation, the heating coefficient was calculated and its annual mean value was about 0.21 The albedo and heating coefficient was varied with season, surface characteristics, and meteorological conditions. The diurnal and seasonal variations of radiation energy were discussed in terms of the surface characteristics and meteorological conditions. In the daytime, during clear skies, net radiation was dominated by the shortwave radiation. In presence of clouds and fog, the radiation energy was diminished. At night, the net radiation was entirely dominated due to the net longwave radiation. There was no distinct diurnal variation in net radiation flux during the overcast or rainy days. The net radiation was strongest in spring and weakest in winter. The seasonal development in leaf area was also reflected in a strong seasonal pattern of the radiation energy balance. The timing, duration, and maximum leaf area and trunk temperature were found to be an important control on radiation energy budget. The trunk temperature was either equal or warmer than air temperature during most of the growing season because the canopy could absorb a substantial amount of sunlight. After autumn (after the middle of October), the trunk temperature was consistently cooler than air temperature.

겨울철 노면에 발생하는 어는 비와 블랙아이스의 기상학적 분석에 관한 사례 연구 (A Case Study on Meteorological Analysis of Freezing Rain and Black Ice Formation on the Load at Winter)

  • 박근영;이순환;김은지;윤병영
    • 한국환경과학회지
    • /
    • 제26권7호
    • /
    • pp.827-836
    • /
    • 2017
  • Freezing rain is a phenomenon when precipitation falls as a liquid rain drop, but freezes when it comes into contact with surfaces or objects. In this study, we investigated the predictability of freezing rain and its characteristics, which are strongly related with the occurrence of black ice using synoptic scale meteorological observation data. Two different cases occurred at 2012 were analyzed and in the presented cases, freezing rain often occurs in the low-level low pressure with the warm front. The warm front due to the lower cyclone make suitable environment in which snow falling from the upper layer can change into supercooled water. The $0^{\circ}C$ temperature line to generate supercooling water is located at an altitude of 850 hPa in the vertical temperature distribution. And the ground temperature remained below zero, as is commonly known as a condition for black ice formation. It is confirmed that the formation rate of freezing rain is higher when the thickness after 1000-850 hPa is 1290-1310 m and the thickness of 850-700 hPa layer is larger than 1540 m in both cases. It can also be used to predict and estimate the generation of freezing rain by detecting and analyzing bright bands in radar observation.