• 제목/요약/키워드: Wing-Body Configuration

검색결과 27건 처리시간 0.02초

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

  • Sun, Chunya;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.995-1006
    • /
    • 2015
  • Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

결빙 현상과 불확실성을 고려한 소형 무인항공기 제어기법 비교 연구 (A Comparison of Control Methods for Small UAV Considering Ice Accumulation and Uncertainty)

  • 안효득;문정호
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.34-41
    • /
    • 2023
  • 본 논문은 최근 각광받고 있는 소형 무인항공기에 결빙효과와 윙락 불확실성을 적용하고 여러 제어기법을 활용하여 자세 제어 시뮬레이션 수행하였으며 그 결과를 다룬다. 먼저 선정 기체인 BWB 형태의 소형 무인 항공기인 Skywalker X8 기체의 기본 형상과 결빙효과가 적용된 형상에 대하여 선형화를 수행하였다. 이후 MATLAB SimulinkⓇ를 활용하여 외란 관측기 기반 PID 제어, 모델 참조 적응 제어, 모델 예측 제어기법을 사용하여 기본 형상과 결빙효과가 적용된 형상에 대하여 roll 및 pitch 자세 제어 시뮬레이션을 수행한다. 또한, 기존 연구에서 진행되지 않았던 윙락 불확실성을 결빙이 적용된 형상에 동시 적용하여 시뮬레이션을 수행하였으며 각 제어기법의 성능을 비교 분석하였다.

비행체 형상에 대한 천음속 점성 유동의 수치적 연구 (Computational Study on Turbulent Viscous flow around RAE 'A' Wing Axi-Symmetric Body Configuration)

  • 임예훈;장근식;정희권;권장혁;박민우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.81-85
    • /
    • 1997
  • The Computer code KAIST-ADD LUFUNS has been developed to solve 3D compressible turbluent flow. This method employs Harten-Yee's modified upwind scheme in the explicit part and Steger-Warming Splitting in the implicit part. Flow past RAE wing-body aircraft has been computed for three different flow conditions. The result have shown good comparision with the experimental data. Baldwin-Lomax turbluence model is used for this computer code.

  • PDF

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

Aerodynamic Shape Optimization using Discrete Adjoint Formulation based on Overset Mesh System

  • Lee, Byung-Joon;Yim, Jin-Woo;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.95-104
    • /
    • 2007
  • A new design approach of complex geometries such as wing/body configuration is arranged by using overset mesh techniques under large scale computing environment. For an in-depth study of the flow physics and highly accurate design, several special overlapped structured blocks such as collar grid, tip-cap grid, and etc. which are commonly used in refined drag prediction are adopted to consider the applicability of the present design tools to practical problems. Various pre- and post-processing techniques for overset flow analysis and sensitivity analysis are devised or implemented to resolve overset mesh techniques into the design optimization problem based on Gradient Based Optimization Method (GBOM). In the pre-processing, the convergence characteristics of the flow solver and sensitivity analysis are improved by overlap optimization method. Moreover, a new post-processing method, Spline-Boundary Intersecting Grid (S-BIG) scheme, is proposed by considering the ratio of cell area for more refined prediction of aerodynamic coefficients and efficient evaluation of their sensitivities under parallel computing environment. With respect to the sensitivity analysis, discrete adjoint formulations for overset boundary conditions are derived by a full hand-differentiation. A smooth geometric modification on the overlapped surface boundaries and evaluation of grid sensitivities can be performed by mapping from planform coordinate to the surface meshes with Hicks-Henne function. Careful design works for the drag minimization problems of a transonic wing and a wing/body configuration are performed by using the newly-developed and -applied overset mesh techniques. The results from design applications demonstrate the capability of the present design approach successfully.

3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석 (Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm)

  • 박현돈;김영진;박수형
    • 한국항공우주학회지
    • /
    • 제48권2호
    • /
    • pp.109-117
    • /
    • 2020
  • 기존 정렬 격자의 많은 제약 조건들을 완화할 수 있는 patched-grid 알고리즘을 이용하여 효율적으로 정렬 격자계를 구성하였다. EFD-CFD 워크숍의 case 4: 삼각 날개-원통형 동체 형상에 크게 3가지의 접근 방식을 적용하여 기존의 격자 생성 문제점들을 해결하였고, 실험값과 비교하여 검증하였다. 고 받음각 영역에서 표면 압력 분포가 실험값과 다소 차이를 보였다. 마하수의 증가에 따른 피칭 모멘트의 기울기 변화를 분석하였고 이는 tuck under 현상으로 설명할 수 있었다. 초음속 영역에서는 형상 앞에 궁형 충격파가 발생함으로써 삼각익 뒷전까지 양력을 발생시키는 영역이 확장되었다. 또한, 마하수와 받음각에 따라 압력 중심과 무게 중심의 위치를 비교하여 피칭 모멘트의 경향성을 분석하였다.

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.