• Title/Summary/Keyword: Wing Spar

Search Result 34, Processing Time 0.025 seconds

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

The Design, Construction and Flight of Human Powered Aircraft Sky Runner (인력비행기 스카이 러너 설계.제작.비행)

  • Lee, Ki-Young;Choy, Seoung-Ok;Oh, Jang-Geun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.534-541
    • /
    • 2010
  • With the financial sponsorship of FKI and six other companies, the design and construction of the human powered aircraft Sky Runner has been begun to design in December of 2008. And it flew in late December of 2009. The original design configuration was continuously modified in response to test results as a 30.36m span, $35.25m^2$ wing area, 26.0 aspect ratio and 39.8kg of empty weight. Although, we have made only 150m flight flying a few seconds so far however, it will contribute to the research of ultra-light and long duration flying planes. A brief review of some design features, wing layout, prop design, fabrication and flight test results are presented.

A Study on the Shape Selection of Mechanical Fastening for the Repair of Fighter Wing (전투기 날개 수리를 위한 기계적 체결의 형상 선정에 관한 연구)

  • Choi, Dongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.467-474
    • /
    • 2021
  • A study on optimal shape selection of a mechanical fastening for the repair of crack defect of ROK Air Force F-5 fighter wing was conducted. The crack defect occurred in the spar of the wing, and the technical manual does not specify the repair method. However, ROK Air Force decided to develop a repair technology for this defect in consideration of various logistic conditions. Three repair shapes for the proper repair were devised and the finite element analysis was performed to examine the structural safety of these three connection members. As a result of the structural safety review, two connection members except one were structurally safe with safety margins over zero because the calculated stress values were at or below the yield strength level. Therefore, two connection members were determined to be able to use for repair under the condition that the aircraft operated within the design limit load. The results of this study would be very useful if the same defect occurs in long-term aircraft operated by the ROK Air Force.

Stress Spectrum Algorithm Development for Fatigue Crack Growth Analysis and Experiment for Aircraft Wing Structure (항공기 주익구조물의 피로균열 진전 해석 및 실험을 위한 응력 스펙트럼 알고리즘 개발)

  • Chun, Young Chal;Jang, Yun Jung;Chung, Tae Jin;Kang, Ki Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1281-1286
    • /
    • 2015
  • Fatigue cracks can be generated in aircraft as a result of the cumulative time spent during flight operations, which can extend for long periods of time and cover a variety of missions. If a crack occurs in an aircraft's main spar, it can generate many problems, including a lift time reduction. To solve this problem, it was necessary to perform an analysis of fatigue crack growth in the fatigue critical locations. Much time and expense is involved in generating the stress needed for a crack propagation analysis over a long period of time to obtain the amount of data required for an actual aircraft. In this paper, an algorithm is developed that can calculate the spectrum of stress over a long period of time for a mission by the Southwest Research Institute, which is based on the short-time load factor data produced using the peak-valley cycle counting method.

Structure Test and Vibration Analysis for Small Aircraft (소형항공기(반디호) 몰드의 구조시험 및 진동해석)

  • Jung, Do-Hee;Kim, Jin-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.692-697
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin proof characteristics, is being developed. The previous first and second prototypes, having full depth core sandwich type wing and fixed landing gear, was built for test flights. Newly developing Firefly will be equipped with retractable landing gear and conventional foam core sandwich laminate for wing and fuselage. For manufacturing, composite material process has been studied including coupon tests. Wet lay-up onto foam core with glass fabric using lay-up mold has been chosen, and composite material parts are cured under room temperature and atmospheric pressure condition. In general, molded parts show so good surface smoothness and standardized quality that are best in mass production. In this study, we present the mold technology and development status for small aircraft firefly.

  • PDF

Structural Development for Human Powered Aircraft (인간동력항공기 구조 개발)

  • Shin, Jeong Woo;Woo, Dae Hyun;Park, Ill Kyung;Lee, Mu-Hyoung;Lim, Joosup;Park, Sang Wook;Kim, Sung Joon;Ahn, Seok Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2013
  • Human Powered Aircraft (HPA) should be light in weight and have high efficiency because power source of propulsion is human muscles. Airframe structure takes up most of empty weight of aircraft, so weight reduction of structure is very important issue for HPA. In this paper, design/analysis/test procedures for ultra light weight structure of the HPA developed by Korea Aerospace Research Institute (KARI) are explained briefly. Structural design is conducted through case studies on HPA in the USA and Japan. Loads analysis is performed to calculate design loads which is needed for structural design and analysis. Structural analysis is conducted for structure sizing. Static strength test of main wing spar which is primary structure of wing is performed to verify structural integrity.

Structural Design and Analysis of Composite Cyclocopter Rotor Blades (복합재료 사이클로콥터 로터 블레이드의 구조 설계 및 해석)

  • Hwang In Seong;Hwang Chang Sup;Yun Chul Yong;Kim Seung Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.91-94
    • /
    • 2004
  • A cyclocopter with the cycloidal blades system can be the type of UAV which can combine the high-speed characteristics of the conventional airplane with the low-speed characteristics of the helicopter. The cycloidal blades system, which can be described as a horizontal rotary wing, offers powerful thrust levels, and a unique ability to change the direction of the thrust almost instantly. Rotor blades are designed to withstand tremendous transverse centrifugal loadings, and responding to a number of aerodynamic harmonic vibratory forcing frequencies. To reduce the weight and increase the strength, the blades are made of composite materials. The blades consist of the skin, spar, and trailing stiffener. In this study, static and dynamic behaviors of cyclocopter rotor blades are analyzed by using MSC/NASTRAN.

  • PDF

HPA Structure Design and Power Measurement (인간동력항공기 구조설계와 동력측정)

  • Lee, Chung-Ryul;Park, Ju-Won;Go, Eun-Su;Choi, Jong-Soo;Kim, In-Gul;Kim, Byoung-Soo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • The process of designing and building a human-powered aircraft (HPA) and its performance analysis are introduced in this paper. Light Bros, the Chungnam National University HPA team, has developed Volante, a HPA, to compete in the 2012 exhibition of human-powered aircraft hosted by Korea Aerospace Research Institute. The power train system is composed of a two-blade propeller and Bevel-type gear and the ground test bed is built to simulate the operation. A study has been made to find a efficient propeller based upon the test result of thrust and power available from a pilot under various propeller conditions and running time. The load and structural analysis is conducted for the glider-shaped wing made of composite material which has very high aspect ratio. The spar is analyzed using finite element modeling followed by the comparison of its displacement and strain on structural test. As a result, the performance and safety is confirmed.

Design Optimization of a Wing Structure under Multi Load Spectra using PSO algorithm (PSO 알고리즘을 이용한 다중 하중 스펙트럼 하에서의 항공기 날개 구조부재의 최적 설계 연구)

  • Park, Kook Jin;Park, Yong Jin;Cho, Jin Yeon;Park, Chan Yik;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.963-971
    • /
    • 2012
  • In this paper, development of optimal design tools for wing structure is described including multi load spectra condition and fatigue analysis. Two dimensional CFD result are used for calculating aerodynamic force. Design variables are composed of a number of rib and spar, positions, and thickness of each structural member. The mission profile for fatigue analysis is composed based upon the results of CFD analysis, the flight-by-flight spectra method, the excessive curves for gust loads. Minor's rule was used to deal with multi-load condition. Stress analysis and fatigue analysis are performed to calculate objective functions. Particle Swarm Optimization(PSO) algorithm was used to apply to problems which have dozens of design variables.