• Title/Summary/Keyword: Winding method of transformer

Search Result 149, Processing Time 0.036 seconds

Study on Surge Voltage Distribution Design for UHV Transformer Windings by Finite Element Method (유한요소법에 의한 초고압변압기권선의 충격파전위분포설계에 관한 연구)

  • 황영문;이일천
    • 전기의세계
    • /
    • v.28 no.11
    • /
    • pp.45-51
    • /
    • 1979
  • Finte element methods are developed for the initial distribution problems which contain the surge potential circuits of high voltage transformer windings. The initial distribution of surge voltages in transformer windings are useful to the work to a practical engineering basis. However, the conventional methods of analyzing them so far are much complicated for practical designs. In this paper, the ability to solve surge potential field problems underlies the development of descreting methods to a lodal capacitive distribution-coefficients for determing the surge voltage relationship among a set of transformer coils. A practical example-the modeling of an antioscillation shield coil winding and hisercap winding is used to illustrate and evaluate these methods.

  • PDF

10kVA high $T_c$ Superconducting Power Transformer with Double Pancake Windings (더블팬케이크 권선형 10kVA 고온초전도 변압기)

  • Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Han, Song-Yeop;Ryu, Gyeong-U;Choe, Gyeong-Dang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.65-72
    • /
    • 2001
  • This paper presents the design and test results of a 10kVA single phase HTS transformer which is operating at 77K. Double pancake windings with BSCCO -2223 HTS tape and GFRP cryostat with room temperature bore are used in the transformer. Four double pan cake windings were used in pancake windings are connected in parallel to conduct the secondary current of 45.4A. the rated voltages of each winding are 440/220V. Numerical calculation using Finite Element Method was used to evaluated the performance of each arrangement. Considering the magnetizing reactance, leakage reactance, electrical insulation and the circulating current in low voltage winding which had two windings in parallel, HLLH arrangement was finally chosen. Estimation of the AC loss, magnetizing loss and self field loss, in the design stage, where effects of perpendicular field and parallel field are considered. Room temperature bore type cryostat has been constructed and its heat loss was measured.

  • PDF

Estimation of a circulating current of a three-phase Y-Y-$\Delta$ transformer (3권선 변압기 순환전류 추정 알고리즘)

  • Kang, Yong-Cheol;Lee, Mi-Sun;Lee, Byung-Eun;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.559-560
    • /
    • 2007
  • In the case of the transformers including the delta winding such as a three-phase Y-Y-$\Delta$ transformer, a delta winding current flows in the delta windings. The delta winding current of a three-phase Y-Y-$\Delta$ transformer is decomposed into a non-circulating current and a circulating current. The former can be estimated directly from the line currents, but the latter can not. This paper proposes an estimation method for a circulating current of a Y-Y-$\Delta$ Transformer. A first order differential equation for the circulating current is derived by applying the Kirchhoff's voltage law on the loop of the delta side. The circulating current can be estimated by solving the differential equation. Various test results indicate the algorithm can estimate the circulating current accurately even under over-excitation and magnetic inrush.

  • PDF

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Current equalization method of the rectifier diodes in LLC resonant converter Using the auxiliary winding of the transformer

  • Hyeon, Byeong-Cheol;Kim, Ji-Tae;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.143-145
    • /
    • 2009
  • The method for the current equalization of the rectifier diodes in LLC resonant converter is proposed. The method decreases the current difference between the rectifier diodes using the auxiliary winding of the transformer and asymmetrical pulse width modulation (APWM). The analytical reason of the current unbalance is investigated and the operation principle of the proposed method and APWM control loop are explained. The performance of the proposed method was verified on a 480-W, 400-V/24-V dc/dc converter.

  • PDF

Characteristic Analysis of Hot Spot Temperature according to Cooling Performance Variation of Natural Ester Transformer (식물성 절연유 변압기의 냉각특성 변화에 따른 최고점온도 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • Natural ester has a higher biodegradability, flash and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester also has a higher pour point, viscosity, and water content. These characteristics hamper circulation and the electrical properties of oil-filled transformer. Thus, this paper applied electromagnetic-thermal-flow coupled analysis method to predict temperature distribution inside 154kV single phase power transformer using natural ester. It modeled in the actual appearance for the tank and winding of the power transformer to improve the accuracy of analysis and applied heat flow analysis that considered hydromechanics and heat transfer at the same time. It calculated the power loss, the main cause of temperature rise, from winding and core with electromagnetic analysis then used for the heat source for the heat flow analysis. It then compared the reasonability of result of measurement analysis based on the result acquired from temperature rise test using FBG sensor on the power transformer.

Study on Steady State Analysis of High Power Three-Phase Transformer using Time-Stepping Finite Element Method (시간차분 유한요소법을 이용한 대용량 삼상 변압기의 정상상태 해석에 관한 연구)

  • Yoon, Hee-Sung;Seo, Min-Kyu;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1123-1129
    • /
    • 2012
  • This paper presents the fast steady state analysis using time-stepping finite element method for a high power three-phase transformer. The high power transformer spends huge computational cost of the time-stepping finite element method. It is because that the high power transformer requires a lot of time to reach steady state by its large inductance component. In order to reduce computational cost, in this paper, the adaptive time-step control algorithm combined with the embedded 2nd 4th singly diagonally implicit Runge-Kutta method and the analysis strategy using variation of the winding resistance are studied, and their numerical results are compared with those from the typical time-stepping finite element method.

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.