• 제목/요약/키워드: WindSIM

Search Result 379, Processing Time 0.022 seconds

A Study on Wintering Microclimate Factors of Evergreen Broad-Leaved Trees, in the Coastal Area of Incheon, Korea (인천해안지역의 난온대성 상록활엽수 겨울철 생장에 영향을 미치는 미기후 요인)

  • Kim, Jung-Chul;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • This study investigated the feasibility of wintering evergreen broad-leaf trees in the Incheon coastal area through a climate analysis. The coldest monthly mean air temperature ranged from $-2.9^{\circ}C{\sim}-1.6^{\circ}C$. The warmth index of the coastal area of Incheon ranged from $98.89^{\circ}C{\cdot}month-109.03^{\circ}C{\cdot}month$, while the minimum air temperature year ranged from $-13.9^{\circ}C{\sim}-3.6^{\circ}C$. This proved that the Incheon coastal area was not suitable for evergreen broad-leaf trees to grow as the warmth index ranges from $101.0^{\circ}C{\cdot}month{\sim}117.0^{\circ}C{\cdot}month$, and the temperature year-round is $-9.2^{\circ}C$ or higher. This suggests the coastal areas of Incheon is not suitable for the growth of evergreen broad-leaf trees, however some evergreen broad-leaf trees lived in some parts of the area. Wind speed reduction and temperature effect simulations were done using Landschaftsanalyse mit GIS program. As a result of the simulations of wind speed reduction and temperature effects affecting the evergreen broad-leaf trees, it was discovered that a coastal wind velocity of 8.6m/sec was alleviated to be 5m/sec~7m/sec when the wind reached the areas where evergreen broad-leaf trees were present. It was also discovered that species that grew in contact with buildings benefited from a temperature increase of $1.1^{\circ}C{\sim}3.4^{\circ}C$ due to the radiant heat released by the building. Simulation results show that the weather factors affecting the winter growth damages of evergreen broad-leaved trees were wind speed reduction and local warming due to buildings. The wind speed reduction by shielding and local warming effects by buildings have enabled the wintering of evergreen broad-leaved trees. Also, evergreen broad-leaved trees growing in the coastal area of Incheon could be judged to be gradually adapting to low temperatures in winter. This study reached the conclusion that the blockage of wind, and the proximity of buildings, are required for successfully wintering evergreen broad-leaf trees in the coastal area of Incheon.

A Study of Energy Production Change according to Atmospheric Stability and Equivalent Wind Speed in the Offshore Wind Farm using CFD Program (CFD를 이용한 등가풍속 산정과 대기안정도에 따른 연안풍력단지 발전량 변화 연구)

  • Ryu, Geon-Hwa;Kim, Dong-Hyeok;Lee, Hwa-Woon;Park, Soon-Young;Kim, Hyun-Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.247-257
    • /
    • 2016
  • To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (${\alpha}$). AEP is increased by 11% when atmosphere becomes to be stabilized (${\alpha}$ > 0.2) than it is convective (${\alpha}$ < 0.1). However, it is found that extreme wind shear (${\alpha}$ > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.

Wind Tunnel Test for Scaled Wind Turbine Model (Scale effect correction) (축소형 풍력터빈 풍동시험-축소효과 보상기법)

  • Cho, Tae-Hwan;Kim, Yang-Won;Park, Young-Min;Chang, Byeong-Hee
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • Wind tunnel test for the 12% scaled model of NREL Phase VI wind turbine was conducted in KARI low speed wind tunnel for $2006{\sim}2007$. The 1st and 2nd test was designed to find out the wind tunnel test method for the blade manufacturing accuracy and surface treatment method by using the composite and aluminum blades. And the 3rd test was designed to study the scale effect. The chord extension method which was used for Bo-105 40% scaled model was adapted for scale effect correction. Test results shows that the chord extension method works well for the torque slope but the maximum torque for scaled model is about 8% below than the real scale model. New correction method to correct this offset was proposed.

  • PDF

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.

AEP Prediction of Gangwon Wind Farm using AWS Wind Data (AWS 풍황데이터를 이용한 강원풍력발전단지 발전량 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Ki;Kim, Byeong-Min;Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.119-122
    • /
    • 2011
  • AWS (Automated Weather Station) wind data was used to predict the annual energy production of Gangwon wind farm having a total capacity of 98 MW in Korea. Two common wind energy prediction programs, WAsP and WindSim were used. Predictions were made for three consecutive years of 2007, 2008 and 2009 and the results were compared with the actual annual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm. The results from both prediction programs were close to the actual energy productions and the errors were within 10%.

  • PDF

Wake Losses and Repositioning of Wind Turbines at Wind Farm (풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구)

  • Park, Kun-Sung;Ryu, Ki-Wahn;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

A Design for a Fuzzy Logic based Frequency Controller for Efficient wind Farm Operation (풍력발전단지의 효율적 운영을 위한 퍼지로직 기반 주파수 제어기 설계)

  • Kim, Se Yoon;Kim, Sung Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • Recently wind energy penetration into power systems has increased. Wind power, as a renewable energy source, plays a different role in the power system compared to conventional power generation units. As long as only single and small wind power units are installed in the power system, wind power does not influence power system operation and can easily be integrated. However, when wind power penetration reaches a significantly high level and conventional power production units are substituted, the impact of wind power on the power system becomes noticeable and must be handled. The connection of large wind turbines and wind farms to the grid has a large impact on grid stability. The electrical power system becomes more vulnerable to and dependent on wind energy production, and therefore there is an increased concern about the large wind turbines impact on grid stability. In this work, a new type of fuzzy logic controller for the frequency control of wind farms is proposed and its performance is verified using SimWindFarm toolbox which was developed as part of the Aeolus FP7 project.

Estimation of Fugitive Dust Emission and Impact Assessment in Constructing the New Port by Reclamation of Sea Sand (신항만 해사 매립 공사시 비산먼지 발생량 산정 및 주변영향평가)

  • Choi, Won-Joon;Cho, Ki-Chul;Lee, Eun-Yong;Na, Ha-Young;Lee, Soon-Kyu;Oh, Kwang-Joong
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.237-247
    • /
    • 2006
  • In case of studied area located around the sea, the data measured from the regional meteorological office is highly different from the local weather data because the diffusivity of fugitive dust varies considerably with meteorological conditions. Especially, it is very difficult to predict the amount of fugitive dust accurately as wind speed remains high frequently. In this study, the fluxes of suspended particulates as a function of the friction velocity were applied to consider the effect of wind speed on the amount of fugitive dust generated from the reclamation site. The amount of fugitive dust estimated as mentioned above was simulated by using ISCST3 model. As a result, in case of using only the Fugitive Dust Formula which is usually used in Environment Impact Assessment, the predicted $PM_{10}$ concentrations with points were $43.4{\sim}67.8{\mu}g/m^3$. However, in case of applying to the flux of suspended particulates, the predicted values of $PM_{10}$ with points were $43.3{\sim}69.1{\mu}g/m^3$, $49.5{\sim}90.4{\mu}g/m^3$ and $76.0{\sim}182.6{\mu}g/m^3$ with the wind speeds of 4.4, 5.8 and 7.7m/s, respectively. It could be possible to predict the amount of fugitive dust accurately because these predicted values were similar to the measured values. Consequently, we can establish alternatives for reduction of fugitive dust in this area damaged by fugitive dust which is caused by wind.

Numerical Simulation of Effect on Atmospheric Flow Field by Development of Coastal Area (임해지역의 개발이 기상장에 미치는 영향예측)

  • Lee, Sang-Deug;Mun, Tae-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.919-928
    • /
    • 2006
  • The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain lot the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values, Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center. Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is veil accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime. And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center. Temperature after development was high $0.55\sim0.67^{\circ}C$ in the 14 hoots, also was tend to appear lowly $0.10\sim0.22^{\circ}C$ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.

A Fluid Analysis of a Container Crane using the Computation Fluid Dynamics (전산유동해석을 이용한 컨테이너 크레인의 유동 분석)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.349-354
    • /
    • 2006
  • This study analyzed the fluid state around a container crone according to a wind direction when a wind load was applied to a container crone. The container crane for this research is a model of a 50-ton class used broadly in the current ports. The dimension of an external fluid field set up diameter, 300m, height, 200m. This study considered the change of a wind velocity according to an altitude in a criterion of a wind velocity, 50m/s, applying a power series law. An incident angle applied to an interval of 30 degrees in $0^{\circ}{\sim}180^{\circ}$ and this study carried out a computation fluid dynamics using a CFX-10. In this study, we indicate the wind pressure according to the height and section figure of each member. In addition, we suggest the wind pressure accordint to a wind direction. And we will analyze the structure stability of a container crone from the fluid-ductile analysis in the next study.

  • PDF