• Title/Summary/Keyword: WindSIM

Search Result 379, Processing Time 0.032 seconds

Comparative Study of Tip Clearance Loss in Impulse and Reaction Turbine Cascades (충동터빈과 반동터빈 캐스케이드에서의 팁 간극 손실에 대한 비교 연구)

  • Park, Kyung-Wook;Jung, Eun-Hwan;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-148
    • /
    • 2008
  • Korea Aeronautics Research Institute (KARI) is developing a turbo pump that has 1-stage impulse turbine and relatively high tip clearance for safety. The objective of this research is to investigate the effect of reaction on tip clearance loss in axial turbines. Both cascades were tested in a subsonic wind tunnel. In each cascade, total pressure was measured for tip clearance ranging from 1% to 20% of chord. In results, increasing tip clearance, total pressure loss in reaction turbines is continually increased but impulse turbines keep almost same level of mass averaged total pressure loss. When tip clearance becomes more than 10% of chord, mass-averaged total pressure loss in impulse turbines is less than in reaction. This means that when tip clearance is more than 10% of chord, impulse turbines have better efficiency than reaction turbines.

  • PDF

Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation

  • Jang, Shinae;Jo, Hongki;Cho, Soojin;Mechitov, Kirill;Rice, Jennifer A.;Sim, Sung-Han;Jung, Hyung-Jo;Yun, Chung-Bangm;Spencer, Billie F. Jr.;Agha, Gul
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.439-459
    • /
    • 2010
  • Structural health monitoring (SHM) of civil infrastructure using wireless smart sensor networks (WSSNs) has received significant public attention in recent years. The benefits of WSSNs are that they are low-cost, easy to install, and provide effective data management via on-board computation. This paper reports on the deployment and evaluation of a state-of-the-art WSSN on the new Jindo Bridge, a cable-stayed bridge in South Korea with a 344-m main span and two 70-m side spans. The central components of the WSSN deployment are the Imote2 smart sensor platforms, a custom-designed multimetric sensor boards, base stations, and software provided by the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. In total, 70 sensor nodes and two base stations have been deployed to monitor the bridge using an autonomous SHM application with excessive wind and vibration triggering the system to initiate monitoring. Additionally, the performance of the system is evaluated in terms of hardware durability, software stability, power consumption and energy harvesting capabilities. The Jindo Bridge SHM system constitutes the largest deployment of wireless smart sensors for civil infrastructure monitoring to date. This deployment demonstrates the strong potential of WSSNs for monitoring of large scale civil infrastructure.

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

Feasibility study on the design of DC HTS cable core

  • Sim, Ki-Deok;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Su-Kil;Won, Young-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2010
  • The renewable energy source is considered as a good measure to cope with the global warming problem and the fossil energy exhaustion. The construction of electric power plant such as an offshore wind farm is rapidly increasing and this trend is expected to be continued during this century. The bulky and long distance power transmission media is essential to support and promote the sustainable expansion of renewable energy source. DC power cable is generally considered as the best solution and the demand for DC electric power has been rapidly increasing. Especially, the high temperature superconducting (HTS) DC cable system begins to make a mark because of its advantages of huge power transmission capacity, low transmission loss and other environmental friendly aspects. Technical contents of DC HTS cable system are very similar to those of AC HTS cable system. However the DC HTS cable can be operated near its critical current if the heat generation is insignificant, while the operating current of AC HTS cable is generally selected at about 50~70% of the critical current because of AC loss. We chose the specifications of the cable core of 'Tres Amigas' project as an example for our study and investigated the heat generation when the DC HTS cable operated near the critical current by some electric and thermal analyses. In this paper, we listed some technical issues on the design of the DC HTS cable core and described the process of the cable core design. And the results of examination on the current capacity, heat generation, harmonic loss and current distribution properties of the DC HTS cable are introduced.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Correlation between Meteorological Factors and Water Discharge from the Nakdong River Barrage, Korea (낙동강 하구역 해양물리환경에 미치는 영향인자 비교분석(I) - 하구둑 방류량과 기상인자 -)

  • Park, San;Yaan, Han-Sam;Lee, In-Cheal;Kim, Hean-Tae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • We estirmted the yearly and monthly variation in discharge from the Nakdong River Barrage. We studied the total monthly discharge, the mean daily discharge, and the maximum daily discharge based on the observational discharge data for the 11-year period 1996-2006. We also examined the correlation between the discharge and the meteorologiml factors that influence the river inflow. The results from this study are as follows. (1) The total monthly discharge for 11 years at the Nakdong River Barrage was $224,576.8{\times}10^6\;m^3$: The daily maximum was in 2003, with $56,292.3{\times}10^6\;m^3$. The largest daily mean release discharges occurred in August with $52,634.2{\times}10^6\;m^3$ (23.4% of the year), followed by July and September in that order with 23.1 and 17%, respectively. (2) The monthly pattern of discharge could be divided into the flood season for the period July-September (discharge =$1000{\times}10^6\;m^3$/day), the normal season from April to June and October (discharge=$300{\times}10^6\;m^3$/day), and the drought season from December to March (discharge < $300{\times}10^6\;m^3$/day). (3) Periods of high temperature, low evaporation loss, and short sunshine duration produced a much higher discharge in general. Conditions of low rainfall and high evaporation loss, as was the rose in 2003, tended to reduce the discharge, but high rainfall and low evaporation loss tended to increase the discharge as it did in 200l. (4) The dominant wind directions during periods of high discharge were NNE (15.5%), SW and SSW (13.1%), S(12.1%), and NE (10.8%) This results show that it run bring on accumulation of fresh water when northern winds are dominant, and it run flow out fresh water toward offslwre when southern winds are dominant.

  • PDF

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

Study on the Processing and Compositions of Salted and Dried Mullet Roe (영암산 염건 숭어알의 가공과 조성에 관한 연구)

  • Joe, Sang-June;Rhee, Chong-Ouk;Kim, Dong-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.242-251
    • /
    • 1989
  • The salted-dried mullet(Mugil japonicus) roe is a kind of traditional food particulary in the area of Young-am gun, Chunnam province. This study was conducted to conform the scientific processing conditions and to evaluate the nutritional quality and changes of major components during storage times. The manufacturing method was that the fresh roe was salted for about 20 hours for the preparation of salted-dried roe, washed by clean waters, drained, shaped a flat piece with 1.2cm thickness by pressing, and spreaded sesame oils on the surface of the salted roe periodically during wind drying for 20 days. The dried roe was blanched in heated water$(80^{\circ}C/3min)$ and packaged the dried product for storages. The fractional compositions of free lipid of wind dried roe were 40% of neutral lipids, 12% of glycolipids and 9% of phospholipids and those of bound lipids were 13% of neutral lipids. 10% of glycolipids and 13% of phospholipids respectively. The major fatty acids of the roe were $C_{16:0}$, $C_{18:0}$, $C_{18:1}$, $C_{18:2}$ and $C_{20:0}$ which was consisted of free and bound lipids in wind drying method during processing and storages. Total amino acids were 99.87g/100g and major amino acids were Glu, Pro, Leu, Lys and CySH and the protein score was average 155% and the chemical score was average 109%. Free amino acids was 1,376mg% that had 50.61% of Pro and the major kinds of those were Tyr and CySH.

  • PDF

Effects of Diffusibility of Bubbling Tablet Herbicide Formulations for Paddy Rice (수도용 발포성정제 제초제의 확산성에 미치는 영향)

  • Kim, Man-Ho;Ryang, Kwang-Rok;Lee, Chang-Hyeuk;Shim, Jae-Weon;Kim, Kyung-Hyun;Yoon, Cheol-Su;You, Yong-Man;Pyon, Jong-Yeong
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.401-410
    • /
    • 2005
  • A series of studies involving formulation processes, bubbling activity test, diffusibility test and biological efficacy test was undertaken to develop Jumbo herbicide formulations in paddy rice field. Gas evolution speed from the tablets prepared by different organic acids was in the order of oxalic acid, malonic acid, citric acid, and tartaric acid. The total volume of evolved gas from the tablet and diffusibility of the active ingredient in the submerged water were increased with increase of water temperature; the volume from 1 g of tablet at 10, 15, 25 and $30^{\circ}C$ for 5 minutes after immersion into water was 20, 25, 28, 45, 57 mL, respectively. The concentration of halosulfuron-methyl and pyriminobac-methyl in submerged water at 5, 15, 20 and $30^{\circ}C$ at the 2.4 m distance from the applied spot of the tablet was 20, 48, 85, and 97% of the concentration of treated spot, respectively. The evolved gas volume from the tablets was not affected by pH of submerged water. The concentration of halosulfuron-methyl in different sizes of submerged water within 24 hours after treatment of the tablet was maintained 0.16 ppm, which is ideal concentration at standard dosage regardless of the submerged water area. The concentration of pyriminobac-methyl was also uniformly dispersed in the water within 24 hours after applying it into the submerged water. The wind velocity of 5 m $sec^{-1}$ on concentration distribution of halosulfuron-methyl and pyriminobac-methyl in the submerged water 24 hours after treatment was not influenced; an equal concentration in the up the wind and down the wind from the applied spot was maintained. Spot treatments of one tablet formulations(5 g) including 4 times higher dosage at 4 different spots resulted in even concentration distribution of active ingredient in the water 24 hours after applying it into the submerged water.

Thermal Environments of Children's Parks during Heat Wave Period (폭염 시 어린이공원의 온열환경)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.84-97
    • /
    • 2016
  • This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam: $N\;35^{\circ}11^{\prime}1.4{^{\prime}^{\prim}}$, $E\;128^{\circ}5^{\prime}31.7{^{\prime}^{\prime}}$, elevation 38m, Gaho: $N\;35^{\circ}09^{\prime}56.8{^{\prime}^{\prime}}$, $E\;128^{\circ}6^{\prime}41.1{^{\prime}^{\prime}}$, elevation 24m) over three days during 11-13, August, 2016. The highest ambient air temperatures at the Jinju Meteorological Office during the three measurement days were $35.9{\sim}36.8^{\circ}C$, which corresponded with the extremely hot weather. A series of experiments measured air temperature, relative humidity, wind velocity, black globe temperature, and long-wave and short-wave radiation of the six directions 0.6 m above ground level. The wet bulb globe temperature(WBGT) and the universal thermal climatic index(UTCI) were used to evaluate thermal stress. Surface temperature images of the play equipment were also taken using infrared thermography. Surface temperatures of the play equipment and grounds were used to evaluate burn risk through contact with playground materials. The results showed the following. The maximum air temperatures averaged over 1-hour period for three days were $36.6{\sim}39.4^{\circ}C$. The sun shades reduced those temperatures by up to $2.8^{\circ}C$(green shade) and $1.0^{\circ}C/2.3^{\circ}C$(shelters). The minimum relative humidity values averaged over 1-hour period for three days were 44~50%. The sun shades increased those humidity values by up to 6%(green shade) and 4%/6%(shelters). The risk of heat related illness at the measurement sites of the children's parks were extreme and high in the daytime hours. The maximum WBGT values averaged over a 30-minute period for three days were $31.2{\sim}33.6^{\circ}C$. The sun shades reduced those WBGT values by up to $2.4^{\circ}C$(green shade) and $0.5^{\circ}C/2.1^{\circ}C$(shelters) compared to sandpits, but would not block the risk of heat related illness in the daytime hours. The category of heat stress at the measurement sites of the children's parks were extreme and very strong in the daytime hours. The maximum UTCI values averaged over a 30-minute period for three days were $39.9{\sim}48.1^{\circ}C$. The sun shades reduced those UTCI values by up to $7.8^{\circ}C$(green shade) and $4.1^{\circ}C/8.2^{\circ}C$(shelters) compared to sandpits, but could not lower heat stress category from extreme and very strong to strong and moderate in the daytime hours. According to the burn threshold criteria when skin was in contact with playground materials, the maximum surface temperature of the stainless steels($70.8^{\circ}C$) surpassed three seconds $60^{\circ}C$ threshold for uncoated steel, that of the rubber chip($76.5^{\circ}C$) surpassed five seconds $74^{\circ}C$ threshold for the plastic, that of the plastic slide($68.5^{\circ}C$) and seats($71.0^{\circ}C$) surpassed the one min $60^{\circ}C$ threshold for plastic, respectively. The surface temperatures of shaded play equipment were lower approximately $20^{\circ}C$ than those of play equipment exposed to the sun. Therefore, sun shades can block the risk of burns in daytime hours. Because of the extreme and high risk of heat related illness and extreme and high heat stress at the children's parks during periods of heat waves, parents and administrators must protect children from the use of playgrounds. The risk of burn when contact with play equipments and grounds at the children's parks during periods of heat waves, was very high. The sun shades are essential to block the risk of burn from play equipments and grounds at the children's parks during heat waves.