• Title/Summary/Keyword: Wind-wave Interaction

Search Result 66, Processing Time 0.025 seconds

Numerical Study on Temporal Evolution of Wind-Wave Spectra (풍파 스펙트럼의 시간발전에 관한 수치 실험)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.20-33
    • /
    • 1999
  • The evolution of deep-sea waves is driven by energy input from wind, nonlinear energy transfer between wave components, and dissipation through whitecaps. A comparative study was implemented by the use of two wave models in which only the computation methods of nonlinear wave-wave interactions are different from each other. It was reaffirmed that the nonlinear interaction plays a central role in such phenomena that occurred during the spectral growth of wind-seas as down-shift of the spectral peak frequency, overshoot, undershoot, and formation of self-similar spectrum. Specifically, the directional distribution at high frequencies develops into bimodal form, which is attributed to the nonlinear interactions. As saturation stage is reached, spectral density at high frequencies becomes proportional to negative 4 power to the frequency. Perturbations introduced into the spectrum quickly vanished through the actions of the self-similar mechanism. Thus, the nonlinear transfer has important contribution to the stability of numerical ocean wave models.

  • PDF

Application and Analysis of the Steady State Spectral Wave Model Take into Account the Effect of Current (흐름의 영향을 고려한 정상상태 스펙트럼 파랑모델의 적용 및 분석)

  • Lee, Hak-Seung;Lee, Joong-Woo;Yang, Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • Introduction of wave model, take into account the effect of tide, wind and wave induced currents at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster protection problems. As the steady state spectral wave model could simulate depth induced wave shoaling and refraction, current induced refraction effect, steepness induced wave breaking, diffraction, wind wave growth, wave-wave interaction, and wave-current interaction that redistribute energy, this would support and compensate the gap in the real field of design where other wave models could not deal and cause wrong estimation. In this study, for better understanding and analysis of wave transformation process, we applied the spectral wave model to the large coastal waters near Gaduck Island where the Busan new port construction project is going on. We also compared the simulation results with the calculatea from the existing model. From such a trial of this study, we hope that broader and safer use of the spectral model in the area of port design and disaster prevention system come through in near future.

Effect of Nonlinear Interaction to the Response of a Wave Spectrum to a Sudden Change in Wind Direction (풍속변화에 따른 파랑 스펙트럼 반응에서의 비선형 효과)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.151-160
    • /
    • 1996
  • To construct the third generation model, nonlinear interaction was included in source terms. To calculate the nonlinear interaction, discrete interaction approximation to Boltzmann integral was used, as in WAM model. The general behavior and characteristics of nonlinear interaction were analyzed through the experiments for the durational growth and turning winds.

  • PDF

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

  • Wu Qian;Killeen Timothy L.;Solomon Stanley C.;McEwen Donald J.;Guo, Weiji
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.237-247
    • /
    • 2002
  • We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute $(75^{\circ}N)$ and a joint observation of 10-hour wave with Eureka $(80^{\circ}N)$. All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSW predictions. The FPls at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new fractures about the mesospheric gravity wave, tidal wave, and other oscillations.

Dynamic Behavior Assessment of OC4 Semi-submersible FOWT Platform Through Morison Equation

  • Chungkuk Jin;Ikjae Lee;JeongYong Park;MooHyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.238-246
    • /
    • 2023
  • This paper proposes an effective inertia coefficient (EIC) in the Morison equation for better wave-force calculations. The OC4 semi-submersible floating offshore wind turbine (FOWT) platform was considered to test the feasibility. Large diffraction at large Keulegan-Carpenter (KC) numbers and the interaction between columns can result in errors in estimating the wave force using the Morison equation with a theoretical inertia coefficient, which can be corrected by the EIC as a function of the wave period and direction. The horizontal and vertical wave forces were calculated using the Morison equation and potential theory at each column, wave period, and wave direction. The EICs of each column were then obtained, resulting in a minimal difference between the Morison inertia force and the wave excitation force by the potential theory. The EICs, wave forces, phase angles, and dynamic motions were compared to confirm the feasibility of an EIC concept under regular and random waves.

A Study on Effect of Aerodynamic Loads on Mooring Line Responses of a Floating Offshore Wind Turbine (공기 동역학 하중이 부유식 해상 풍력 발전기의 계류선 응답에 미치는 영향에 관한 연구)

  • Kim, Hyungjun;Han, Seungoh;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • This paper presents effect of aerodynamic loads on mooring line responses of a floating offshore wind turbine. A Matlab code based on blade element momentum (BEM) theory is developed to consider aerodynamic loads acting on NREL 5MW wind turbine. The aerodynamic loads are coupled with time-domain hydrodynamic analyses using one-way interaction scheme of the wave and wind loads. A semi-submersible floating platform which is from Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform is used with catenary mooring lines simply composed of studless chain links. Average values of mooring peak tensions obtained from aerodynamic load consideration are significantly increased compared to those from simple wind drag force consideration. Consideration of aerodynamic loads also yield larger tension ranges which can be important factor to reduce fatigue life of the mooring lines.

WAVE-CURRENT INTERACTIONS IN MARINE CURRENT TURBINES

  • Barltrop, N.;Grant, A.;Varyani, K.S.;Clelland, D.;Pham, X.P.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.80-90
    • /
    • 2006
  • The influence of waves on the dynamic properties of bending moments at the root of blades of tidal stream vertical axis rotors is reported. Blade theory for wind turbine is combined with linear wave theory and used to analyse this influence. Experiments were carried out to validate the simulation and the comparison shows the usefulness of the theory in predicting the bending moments. The mathematical model is then used to study the importance of waves for the fatigue design of the blade-hub connection.

  • PDF