• 제목/요약/키워드: Wind-induced motion comfort

검색결과 10건 처리시간 0.027초

Wind-Induced Motion of Tall Buildings: Designing for Occupant Comfort

  • Burton, M.D.;Kwok, K.C.S.;Abdelrazaq, A.
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2015
  • A team of researchers and practitioners were recently assembled to prepare a monograph on "Wind-Induced Motion of Tall Buildings: Designing for Habitability". This monograph presents a state-of-the-art report of occupant response to wind-induced building motion and acceptability criteria for wind-excited tall buildings. It provides background information on a range of pertinent subjects, including: ${\bullet}$ Physiological, psychological and behavioural traits of occupant response to wind-induced building motion; ${\bullet}$ A summary of investigations and findings of human response to real and simulated building motions based on field studies and motion simulator experiments; ${\bullet}$ A review of serviceability criteria to assess the acceptability of wind-induced building motion adopted by international and country-based standards organizations; ${\bullet}$ General acceptance guidelines of occupant response to wind-induced building motion based on peak acceleration thresholds; and ${\bullet}$ Mitigation strategies to reduce wind-induced building motion through structural optimization, aerodynamic treatment and vibration dissipation/absorption. This monograph is to be published by the American Society of Civil Engineers (ASCE) and equips building owners and tall building design professionals with a better understanding of the complex nature of occupant response to and acceptability of wind-induced building motion. This paper is a brief summary of the works reported in the monograph.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • 제14권6호
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Implications of full-scale building motion experience for serviceability design

  • Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • 제14권6호
    • /
    • pp.537-557
    • /
    • 2011
  • While there are a number of guidelines used throughout the world in the assessment of acceptability of tall building accelerations, none are based on systematically conducted surveys of occupant reaction to wind-induced motion. In this study, occupant response data were gathered by both a self-reporting mechanism and by interviewer-conducted surveys in control tower structures over a period of four years. These two approaches were designed in conjunction with experimental psychologists to ensure unbiased reporting. The data allowed analysis of perception thresholds and tolerability at different building frequencies and in different wind climates. The long-term nature of the studies also allowed an investigation of the causes and effects of adaptation to building motion. As the surveys were designed to allow multiple use during single storms, the effects of exposure duration were investigated. A final exit survey was conducted at the primary survey location to investigate views of the acceptability of wind-induced motion and the factors underlying these views. The findings of the field studies indicate that none of the currently used acceleration guidelines address all of the factors that contribute to occupant dissatisfaction. An alternative framework for assessing acceleration acceptability is proposed.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Practical Experience with Full-scale Performance Verification of Dynamic Vibration Absorbers installed in Tall Buildings

  • Love, J.S.;Morava, B.
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.85-92
    • /
    • 2021
  • Dynamic vibration absorbers (DVAs) in the form of tuned sloshing dampers (TSDs) and tuned mass dampers (TMDs) are commonly used to reduce the wind-induced motion of high-rise buildings. Full-scale performance of structure-DVA systems must be evaluated during the DVA commissioning process using structural monitoring data. While the random decrement technique (RDT) is sometimes employed to evaluate the DVA performance, it is shown to have no theoretical justification for application to structure-DVA systems, and to produce erroneous results. Subsequently, several practical methods with a sound theoretical basis are presented and illustrated using simulated and real-world data. By monitoring the responses of the structure and DVA simultaneously, it is possible to directly measure the effective damping of the system or perform system identification from which the DVA performance can be evaluated.

Control of wind-induced motion in high-rise buildings with hybrid TM/MR dampers

  • Aly, Aly Mousaad
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.565-595
    • /
    • 2015
  • In recent years, high-rise buildings received a renewed interest as a means by which technical and economic advantages can be achieved, especially in areas of high population density. Taller and taller buildings are being built worldwide. These types of buildings present an asset and typically are built not to fail under wind loadings. The increase in a building's height results in increased flexibility, which can lead to significant vibrations, especially at top floors. Such oscillations can magnify the overall loads and can be annoying to the top floors' occupants. This paper shows that increased stiffness in high-rise buildings may not be a feasible solution and may not be used for the design for comfort and serviceability. High-rise buildings are unique, and a vibration control system for a certain building may not be suitable for another. Even for the same building, its behavior in the two lateral directions can be different. For this reason, the current study addresses the application of hybrid tuned mass and magneto-rheological (TM/MR) dampers that can work for such types of buildings. The proposed control scheme shows its effectiveness in reducing floors' accelerations for both comfort and serviceability concerns. Also, a dissipative analysis carried out shows that the MR dampers are working within the possible range of optimum performance. In addition, the design loads are dramatically reduced, creating more resilient and sustainable buildings. The purpose of this paper is to stimulate, shape, and communicate ideas for emerging control technologies that are essential for solving wind related problems in high-rise buildings, with the objective to build the more resilient and sustainable infrastructure and to optimally retrofit existing structures.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

Vibration control parameters investigation of the Mega-Sub Controlled Structure System (MSCSS)

  • Limazie, Toi;Zhang, Xun'an;Wang, Xianjie
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.225-237
    • /
    • 2013
  • Excessive vibrations induced by earthquake excitation and wind load are an obstacle in design and construction of tall and super tall buildings. An innovative vibration control structure system (Mega-Sub Controlled Structure System-MSCSS) was recently proposed to further improve humans comfort and their safeties during natural disasters. Preliminary investigations were performed using a two dimensional equivalent simplified model, composed by 3 mega-stories. In this paper, a more reasonable and realistic scaled model is design to investigate the dynamical characteristics and controlling performances of this structure when subjected to strong earthquake motion. The control parameters of the structure system, such as the modulated sub-structures disposition; the damping coefficient ratio (RC); the stiffness ratio (RD); the mass ratio of the mega-structure and sub-structure (RM) are investigated and their optimal values (matched values) are obtained. The MSCSS is also compared with the so-called Mega-Sub Structure (MSS) regarding their displacement and acceleration responses when subjected to the same load conditions. Through the nonlinear time history analysis, the effectiveness and the feasibility of the proposed mega-sub controlled structure system (MSCSS) is demonstrated in reducing the displacement and acceleration responses and also improving human comfort under earthquake loads.