• Title/Summary/Keyword: Wind-Resistant Design

Search Result 78, Processing Time 0.029 seconds

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

Exploratory study on wind-adaptable design for super-tall buildings

  • Xie, Jiming;Yang, Xiao-yue
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2019
  • Wind-adaptable design (WAD) provides a new method for super-tall buildings to lessen design conflicts between architectural prerequisites and aerodynamic requirements, and to increase the efficiency of structural system. Compared to conventional wind-resistant design approach, the proposed new method is to design a building in two consecutive stages: a stage in normal winds and a stage during extreme winds. In majority of time, the required structural capacity is primarily for normal wind effects. During extreme wind storms, the building's capacity to wind loads is reinforced by on-demand operable flow control measures/devices to effectively reduce the loads. A general procedure for using WAD is provided, followed by an exploratory case study to demonstrate the application of WAD.

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

Estimation of the Wind Forces of Ieodo Ocean Research Station by a Wind Tunnel Test (풍동실험에 의한 이어도 해양과학기지의 풍력산정)

  • 심재설;전인식;황종국;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • A wind tunnel experiment was performed with the design wind speed of 50m/s to investigate the wind forces of Ieodo Ocean Research Station. The structure portion above water surface was modelled with 1/80 scale ratio. The wind force coefficients were determined from the force signals and compared to the results of a numerical study which was separately undertaken. Those results generally agreed well, and it is assured that the experimental data can be effectively used in the wind resistant design of the structure. Making use of the experimental force and pressure coefficients, the wind farce and moments acting on the overall upper structure of prototype are determined together with the wind pressures on local impervious facilities (main deck, solar panel and helideck).

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

Experimental research on design wind loads of a large air-cooling structure

  • Yazhou, Xu;Qianqian, Ren;Guoliang, Bai;Hongxing, Li
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • Because of the particularity and complexity of direct air-cooling structures (ACS), wind parameters given in the general load codes are not suitable for the wind-resistant design. In order to investigate the wind loads of ACS, two 1/150 scaled three-span models were designed and fabricated, corresponding to a rigid model and an aero-elastic model, and wind tunnel tests were then carried out. The model used for testing the wind pressure distribution of the ACS was defined as the rigid model in this paper, and the stiffness of which was higher than that of the aero-elastic model. By testing the rigid model, the wind pressure distribution of the ACS model was studied, the shape coefficients of "A" shaped frame and windbreak walls, and the gust factor of the windbreak walls were determined. Through testing the aero-elastic model, the wind-induced dynamic responses of the ACS model was studied, and the wind vibration coefficients of ACS were determined based on the experimental displacement responses. The factors including wind direction angle and rotation of fan were taken into account in this test. The results indicated that the influence of running fans could be ignored in the structural design of ACS, and the wind direction angle had a certain effect on the parameters. Moreover, the shielding effect of windbreak walls induced that wind loads of the "A" shaped frame were all suction. Subsequently, based on the design formula of wind loads in accordance with the Chinese load code, the corresponding parameters were presented as a reference for wind-resistant design and wind load calculation of air-cooling structures.

Estimation of Standard Load for Disaster-Resistant Design of Outdoor Signboards (내재해형 옥외광고물 설계를 위한 표준하중 산정)

  • Lee, Sungsu;Kim, Junyeong;Ham, Hee Jung;Kim, Ji Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.131-140
    • /
    • 2016
  • Recent destructions of outdoor signboards have frequently been caused by strong wind, resulting in damage on the property and human livelihood. One of the major causes of the problems is inadequate implementation of structural design code to the outdoor signboards which are vulnerable to wind. This leads to this paper to present the design guideline of wind-resistant outdoor signboards. In order to estimate the design wind speed, basic wind speeds over Korea suggested by KBC(2015)(revision) are corrected with land surface roughness and topography of the terrain and installation height of the signboard. This paper also suggested the procedure of wind load estimation for different types of outdoor signboards; wall attached type, wall ribbed type and ground erected type. Since the process involves complex calculation to some extent, this paper presents summarized version of wind load estimation from non-professional point of view.

Near-ground boundary layer wind characteristics analysis of Typhoon "Bailu" based on field measurements

  • Dandan Xia;Li Lin;Liming Dai;Xiaobo Lin
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, detailed wind field data of the full path of typhoon "Bailu" were obtained based on site measurements. Typhoon "Bailu" made first landfall southeast of the Taiwan Strait with a wind speed of approximately 30 m/s near the center of the typhoon eye and a second landfall in Dongshang County in Fujian Province. The moving process is classified into 3 regions for analysis and comparison. Detailed analyses of wind characteristics including wind profile, turbulence intensity, gust factor, turbulence integral scale and wind power spectral density function at the full process of the typhoon are conducted, and the findings are presented in this paper. Wind speed shows significant dependence on both the direction of the moving path and the distance between the typhoon center and measurement site. Wind characteristics significantly vary with the moving path of the typhoon center. The relationship between turbulence intensity and gust factor at different regions is investigated. The integral turbulence scales and wind speed are fitted by a Gaussian model. Such analysis and conclusions may provide guidance for future bridge wind-resistant design in engineering applications.

Estimation of Wind Resistance Capacity of Nielsen Arch Bridge Based on Measured Data From Monitoring System (모니터링 시스템의 계측자료를 기반으로 한 닐슨아치 교량의 내풍 안정성 평가)

  • Lee, Deok Keun;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.56-64
    • /
    • 2013
  • The wind resistant capacity of bridges with a span of less than 200m is typically evaluated by Wind Resistant Design Manual for Highway Bridges in Japan. Also, the first vertical frequency plays an important role in the evaluation of their aerodynamic performance. An unexpected vortex-induced vibration of Nielsen arch bridge with span of 183m designed by this manual has been measured by monitoring system during typhoon. The amplitude of vibrations was about 2 times than the allowable vibration displacement. This paper presents the feature of vortex-induced vibration of this Nielsen arch bridge based on measured wind velocity, wind direction, and responses at midspan of main girder. From the result of FFT, the $1^{st}$ mode shape of the bridge is antisymmetric and the $2^{nd}$ is symmetric. Also, the dominant vibration of the bridge is the $2^{nd}$ vertical mode. According to these results, the $2^{nd}$ vertical vibration mode of this Nielsen arch bridge is prior to the first for the estimation of wind resistance capacity.