• Title/Summary/Keyword: Wind wave

Search Result 869, Processing Time 0.026 seconds

Status of Observation Data at Ieodo Ocean Research Station for Sea Level Study

  • Han, MyeongHee
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.323-343
    • /
    • 2020
  • Observation data measured at Ieodo Ocean Research Station (IORS) have been utilized in oceanographic and atmospheric studies since 2003. Sea level data observed at the IORS have not been paid attention as compared with many other variables such as aerosol, radiation, turbulent flux, wind, wave, fog, temperature, and salinity. Total sea level rises at the IORS (5.6 mm yr-1) from both satellite and tide-gauge observations were higher than those in the northeast Asian marginal seas (5.4 mm yr-1) and the world (4.6 mm yr-1) from satellite observation from 2009 to 2018. The rates of thermosteric, halosteric, and steric sea level rises were 2.7-4.8, -0.7-2.6, 2.3-7.4 mm yr-1 from four different calculating methods using observations. The rising rate of the steric sea level was higher than that of the total sea level in the case with additional data quality control. Calculating the non-steric sea level was not found to yield meaningful results, despite the ability to calculate non-steric sea level by simply subtracting the steric sea level from total sea level. This uncertainty did not arise from the data analysis but from a lack of good data, even though tide, temperature, and salinity data were quality controlled two times by Korea Hydrographic and Oceanography Agency. The status of the IORS data suggests that the maintenance management of observation systems, equipment, and data quality control should be improved to facilitate data use from the IORS.

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee Yun-Sok;Jung Yun-Chul;Kim Se-Won;Yun Jong-Hwui;Bae Suk-Han;Nguyen Phung-Hung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.357-363
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchored ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of the method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

A Study on the Calculation of Towing Force for the Disabled Ship and Its Experiments (사고 선박의 예인력 계산 및 실험에 관한 연구)

  • Nam, Taek-Kun;Jung, Chang-Hyun;Kim, Jin-Man;Choi, Hyuek-Jin
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.463-470
    • /
    • 2014
  • In this paper, calculation of towing force required to tow the ship and experiments to verify its appropriacy are discussed. Friction, wind and wave-making resistance of vessel are considered to calculate towing force of specified vessel. Propeller resistance is also reflected and it is assumed that the propellers are locked. Node analysis to estimate additional resistance on towline is applied. Total towing force could be obtained by adding the ship's resistance and towline resistance. Experiments with training ship SAE YU DAL was executed to check the effectiveness of calculation methods and some comparison between experiments and calculation results was also done. From the comparative analysis, we confirmed that towing speed is primary terms in the calculation of towing force and propeller resistance is a major elements of ship's resistance with the increasing of towing speed. We can see that additional resistance induced by yawing of ship during towing have to be considered for total tow resistance.

Development of Solution for Safety and Optimal Weather Routing of a Ship

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Mai, Thi Loan;Nguyen, Tien Thua;Vo, Anh Hoa;Seo, Ju-Won;Yoon, Gyeong-Hwan;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.318-320
    • /
    • 2018
  • When a ship sails on sea, it may be influenced by the environmental disturbance such as wind, wave, sea surface temperature, etc. These affect on the ship's speed, fuel consumption, safety and operating performance. It is necessary to find the optimal weather route of a ship to avoid adverse weather conditions which can put the crews in serious danger or cause structural damage to the vessel, machinery, and equipment. This study introduced how to apply A* algorithm based on sea trial test data for determining the optimal ship routes. The path cost function was modelled as a function of minimum arrival time or minimum energy depending on the time of various environment conditions. The specially modelled path-cost function and the safety constraints were applied to the A* algorithm in order to find the optimal path of the ship. The comparison of ship performances estimated by real sea trial's path and estimated optimal route during the voyage of the ship was investigated. The result of this study can be used to create a schedule to ensure safe operation of the ship with short passage time or minimum energy. In addition, the result of this study can be integrated into an on-board decision supporting expert system and displayed in Electronic Chart Display and Information System (ECDIS) to provide all the useful information to ship master.

  • PDF

The Wireless Communication for Marine Buoy (해상 브이용 무선 통신체계)

  • Oh, Jin-Seok;Jeon, Joong-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2140-2146
    • /
    • 2014
  • Ocean buoys are operated for safe navigation and collecting ocean data. Recently, to reducing marine buoy's damage by ocean weather's bad condition and collision with vessels has been conducted in several field research. This paper's experiment is buoy condition monitoring about predefined data form by users. As a result using Wireless remote control board applying a radio signal processing algorithms, it can observe buoy's state at an interval of three minutes on the land. Acquired data type is changeable according to ocean weather condition or buoy's purpose of using in advance. Also, this paper conducted an experiment such as data-transmission's stability and wireless communication's availability. As results of the analysis of the transmitted data, the solar, wind and wave power indicates the maximum amount of power, 50 W, 20 W and 40 W respectively. The communication system proven through this research can apply to buoy or other ocean facility.

For Sustainable Future with Sustainable Architecture - BiWP, New Wave of Building integrated Wind Power System (지속가능미래를 위한 신재생에너지 응용 친환경건축 방향 - 7. BiWP, 건물일체형 풍력 발전 시스템의 새바람)

  • Yoon, Jong-Ho
    • Korean Architects
    • /
    • s.475
    • /
    • pp.65-74
    • /
    • 2008
  • 1970년 초에 배럴당 1불하던 원유가가 지금은 120불을 상회하고 있다. 더욱 놀라운 것은 3년 전만 하더라도 40불 이하 수준이던 것이 불과 몇 년 사이에 3배 이상 급등해 버린 것이다. 우리는 아직 유가 100불 이상의 고유가 시대에 대한 고통을 실감하지 못하고 있지만, 빠른 시일 안에 대항한 형태로 우리를 불편하게 하고, 더가서는 사회 경제 문화 등 모든 우리의 활동패턴에 근본적 변화를 일으킬 것이라는데는 어느 누구도 이의를 달지 못할 것이다. 한편 90년대만 하더라도 친환경 건축기술은 선택적 사양으로 인식되어 왔으며, 일부 고급건물 또는 데모성격의 건물에만 반영되던 미래의 기술 분야로 간주되어왔다. 하지만 10년 남짓 지난 지금 우리 주변에서 가장 흔하게 접할 수 있는 용어 중의 하나가 친환경, 지속가능, 그린, 에코 등 이며, 최근 많은 건설사가 고민하고 있는 가장 중요한 이슈가 친환경 건축 관련 기술이 되어버렸다. 최근 유가의 급등세 보다는 더디다 할 지라도 몇 년 사이에 벌어지고 있는 제도적, 사회 경제적 변화 동향을 돌이켜 볼 때 건축계 또한 매우 빠른 속도로 변해가고 있으며, 부지불시간에 유가등급과 같이 변화된 환경에 놀라는 시기가 곧 도래할 것이다. 오랜 기간 에너지 및 친환경 관련 요소기술의 개발, 정부의 지원제도 확대, 보급 강화 등 각종 노력을 통해 이제는 건축 설계분야에서도 친환경건축물에 대한 저변이 크게 확대되었다고 볼 수 있다. 하지만 실상 우리주변에서 제대로된 친환경 건축물을 실제로 보고자 한다면 두손으로 꼽기도 힘들 정도인 사실에 놀라게 될 것이다. 이러한 배경하에 이번 연재에서는 그동안 오랜기간 떠들고 노력했음에도 불구하고 실제 제대로된 친환경 건축물을 우리 주변에서 찾기 힘든 이유를 건축실무자 측면에서 재고해 보고, 이에 대한 새로운 해결방안을 모색해 보는 계기를 갖고자 한다. 특히 많은 친환경 건축기술 중 최근 선진국을 중심으로 가장 큰 이슈가 되어 있고, 또한 건축사 입장에서 쉽게 접근하기 어려운 기술분야인 신재생에너지 건축응용 측면에서 다양한 최신 기술 및 실질적 접근방법과 사례를 주제별로 제시하고자 한다.

  • PDF

A Study On the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체 운동 평가를 위한 다기능 계측시스템 개발에 관한 연구)

  • kim Chol-seong;Jung Chang-hyun;Lee Yun-sok;Kong Gil-young;Lee Chung-ro;Cho Ik-soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.69-74
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method sum as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kind of sensors sum as three dimensional accelerator, two dimensional tilt sensor, two displacement sensors and azimuth sensor. Using this measuring system(MMS), it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing sum as rolling, pitching, yawing, swaying, heaving, surging under the certain external forces.

  • PDF

A Prediction Method of Tension on Containment Boom for Marine Floating Debris (부유물 차단막에 작용하는 장력추정에 관한 실험연구)

  • Yu J. S.;Sung H. G.;Ryu J. M.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • The main functions of containment boom for marine floating debris are to prevent spreading of the marine floating debris and to effectively collect the trash skimmer. The design characteristics of containment boom for marine floating debris in wave, current and wind are investigated. The response of a containment boom on the current is a function of a number of parameters, such as geometric characteristics, buoyance/weight ratio and towing velocity. To understand the relationship between these design parameters more clearly, a series of tests with three models with the variation of current speed and gap ratio was conducted. The model tests results are developed to new numerical equation that is tension prediction method of containment boom for marine floating debris. Also its is compared with open sea experimental results.

  • PDF

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Investigation of seismic safety of a masonry minaret using its dynamic characteristics

  • Basaran, Hakan;Demir, Ali;Ercan, Emre;Nohutcu, Halil;Hokelekli, Emin;Kozanoglu, Celalettin
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.523-538
    • /
    • 2016
  • Besides their spiritual significance, minarets are humanity's cultural heritage to the future generations due to their historical and architectural attraction. Currently, many historical masonry minarets are damaged and destroyed due to several reasons such as earthquakes and wind. Therefore, safety of these religiously significant buildings needs to be thoroughly investigated. The utmost care must be taken into account while investigating these structures. Our study investigated earthquake behavior of historical masonry minaret of Haci Mahmut Mosque. Destructive and non-destructive tests were carried out to determine earthquake safety of this structure. Brick-stone masonry material properties of structure were determined by accomplishing ultrasonic wave velocity, Schmidt Hammer, uniaxial compression (UAC) and indirect tension (Brazilian) tests. Determined material properties were used in the finite element analysis of the structure. To validate the numerical analysis, Operational Modal Analysis was applied to the structure and dynamic characteristics of the structure were determined. To this end, accelerometers were placed on the structure and vibrations due to environmental effects were followed. Finite element model of the minaret was updated using dynamic characteristics of the structure and the realistic numerical model of the structure was obtained. This numerical model was solved by using earthquake records of Turkey with time history analysis (THA) and the realistic earthquake behavior of the structure was introduced.