• Title/Summary/Keyword: Wind wave

Search Result 863, Processing Time 0.023 seconds

Synoptic Air Mass Classification Using Cluster Analysis and Relation to Daily Mortality in Seoul, South Korea (클러스터 분석을 통한 종관기단분류 및 서울에서의 일 사망률과의 관련성 연구)

  • Kim, Jiyoung;Lee, Dae-Geun;Choi, Byoung-Cheol;Park, Il-Soo
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • In order to investigate the impacts of heat wave on human health, cluster analysis of meteorological elements (e.g., temperature, dewpoint, sea level pressure, visibility, cloud amount, and wind components) for identifying offensive synoptic air masses is employed. Meteorological data at Seoul during the past 30 years are used. The daily death data at Seoul are also employed. Occurrence frequency of heat waves which is defined by daily maximum temperature greater than the threshold temperature (i.e., $31.2^{\circ}C$) was analyzed. The result shows that the frequency and duration of heat waves at Seoul are increasing during the past 30 years. In addition, the increasing trend of the frequency and duration clearly appears in late spring and early autumn as well as summer. Factor analysis shows that 65.1% of the total variance can be explained by 4 components which are linearly independent. Eight clusters (or synoptic air masses) were classified and found to be optimal for representing the summertime air masses at Seoul, Korea. The results exhibit that cluster-mean values of meteorological variables of an offensive air mass (or cluster) are closely correlated with the observed and standardized deaths.

Airflow modelling studies over the Isle of Arran, Scotland

  • Thielen, J.;Gadian, A.;Vosper, S.;Mobbs, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.115-126
    • /
    • 2002
  • A mesoscale meteorological model is applied to simulate turbulent airflow and eddy shedding over the Isle of Arran, SW Scotland, UK. Under conditions of NW flow, the mountain ridge of Kintyre, located upwind of Arran, induces gravity waves that also affect the airflow over the island. The possibility to nest domains allows description of the airflow over Arran with a very high resolution grid, while also including the effects of the surrounding mainland of Scotland, in particular of the mountain ridge of Kintyre. Initialised with a stably stratified NW flow, the mesoscale model simulates quasi-stationary gravity waves over the island induced by Kintyre. Embedded in the larger scale wave trains there is continuous development of small-scale transient eddies, created at the Arran hill tops, that move downstream through the stationary wave field. Although the transient eddies are more frequently simulated on the northern island where the terrain is more pronounced, they are also produced over Tighvein, a hill of 458 m on the southern island where measurements of surface pressure and 2 m meteorological variables have been recorded at intermittent intervals between 1996 and 2000. Comparison between early observations and simulations so far show qualitatively good agreement. Overall the computations demonstrate that turbulent flow can be modelled with a horizontal resolution of 70 m, and describe turbulent eddy structure on wavelength of only a few hundred metres.

WiFi(RLAN) and a C-Band Weather Radar Interference

  • Moon, Jongbin;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.216-224
    • /
    • 2017
  • In the terrain of the Korean peninsula, mountainous and flat lands are complexly distributed in small areas. Therefore, local severe weather develops and disappears in a short time due to the influence of the terrain. Particularly in the case of local severe weather with heavy wind that has the greatest influence on aviation meteorology, the scale is very small, and it occurs and disappears in a short time, so it is impossible to predict with fragmentary data alone. So, we use weather radar to detect and predict local severe weather. However, due to the development of wireless communication services and the rapid increase of wireless devices, radio wave jamming and interference problems occur. In this research, we confirmed through the cases that when the radio interference echo which is one of the non-precipitation echoes that occur during the operation of the weather radar is displayed in the image, its form and shape are shown in a long bar shape, and have a strong dBZ. We also found the cause of the interference through the radio tracking process, and solved through the frequency channel negotiation and AP output minimizing. The more wireless devices increase as information communication technology develops in the future, the more emphasized the problem of radio wave interference will be, and we must make the radio interference eliminated through the development of the radio interference cancellation algorithm.

Measured Effect of Shock Wave on the Stability Limits of Supersonic Hydrogen-Air Flames (충격파가 초음속 수소-공기 화염의 안정한계에 미치는 영향)

  • Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 1999
  • Measured shock wave effects were investigated by changing shock strength and position with particular emphasis on the stability limits of hydrogen-air jet flames. For this purpose, a supersonic nonpremixed, jet-like flame was stabilized along the axis of a Mach 2.5 wind tunnel, and wedges were mounted on the sidewall in order to interact oblique shock waves with the flame. This experiment was the first reacting flow experiment interacting with shock waves. Schilieren visualization pictures, wall static pressures, and flame stability limits were measured and compared to corresponding flames without shock-flame interaction. Substantial improvements in the flame stability limits were achieved by properly interacting the shock waves with the flameholding recirculation zone. The reason for the significant improvement in flame stability limits is believed to be the adverse pressure gradient caused by the shock, which can elongate the recirculation zone.

  • PDF

VRS-GPS Measure of Typhoon Surge Flood Determinedin Busan Coastal Topography (부산 연안지형 VRS-GPS 계측을 통한 태풍해일 침수예측)

  • Kim, Ga-Ya;Jung, Kwang-Hyo;Kim, Jeong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • A coastal flood area was predicted using the empirical superposition of the typhoon surge level and typhoon wave height along the Busan coastal area. The historical typhoon damages were reviewed, and the coastal topography was measured using VRS-GPS. A FEMA formula was applied to estimate the coastal flood area in a typhoon case when the measured and predicted data of typhoon waves are not available. The results in the area of Haeundae beach and Gwangalli beach were verified using the flood area data from the case of Typhoon Maemi (2003). If a Hurricane Katrina class typhoon were to pass through the Maemi trajectory, the areathat would be flooded along theBusan coastal area was predicted and compared with the results of the Maemi case. Because of the lack of ocean environment data such as data for the sea level, waves, bathymetry, wind, pressure, etc., it is hard to improve the prediction accuracy for the coastal flood area in the typhoon case, which could be reflected in the policy to mitigate a typhoon's impact. This paper discusses the kinds of ocean environment information that is needed to predict a typhoon's impact with better accuracy.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

Optimal Control of Dynamic Positioned Vessel Using Kalman Filtering Techniques (칼만필터를 이용한 부유체운동의 최적제어)

  • Lee, Pan-Muk;Lee, Sang-Mu;Hong, Sa-Yeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.37-45
    • /
    • 1988
  • A dynamically positioned vessel must be capable of maintaining a specified position and direction by controlling the thruster devices. The motions of a vessel are often assuned to tne sum of low frequency(LF)motions and high frequency(HF)motions. The former is mainly due to wind, current and second order wave forces, while the latter is mainly due to first order wave forces. In order to avoid the high frequency thruser modulation, the control system must include filters to estimate the low frequency motions from the measured motion signals, This paper presents a control system based on Kalman filtering technique and optimal control tyeory. Using the combined kalmam filter, LF motion estimates and HF ones are achieved from the motion measurement of the vessel. The estimated low frequency motions are used as inputs to the dynamic positioning system. The thruster modulation is minimized using the optimal control theory; Linear Quadratic Gaussian(LQG)controller. The performances of the Kalman filter and the dynamic positioned vessel are investigated by computer simulation.

  • PDF

How the Sun generates "killer electrons" in near-Earth space

  • Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.29-29
    • /
    • 2014
  • A fundamental problem in space physics is to explain the origin of energetic charged particles in space close to the Earth and the significant temporal variations of their flux. The particles are primarily electrons and protons although energetic heavy ions such as O+ are sometimes non-negligible. By "energetic" we mean a rather broad energy range of particles from a few tens of keV to well above MeV. Drastic variations of the particle fluxes (by >3 orders of magnitude) occur over both a short time scale like a few minutes and a long time scale like the 11-year sunspot cycle. In this talk I will focus on relativistic energy electrons (~MeV) trapped within the Earth's magnetosphere. They are a primary element of the space weather since they can cause damage to satellites, so often called "killer electrons". Considering that the source particles in both the solar wind and the ionosphere are relatively cold (~eV), the quasi-permanent existence of these very energetic particles close to the Earth has been a surprise to space physicists for decades. Complex electromagnetic processes such as wave-particle interactions within the magnetosphere are believed to play a major role in generating these killer electrons. While detailed physics remains an active research area, for this lecture I will introduce a synthesized picture of how solar activities are related to wave-particle interaction physics inside the magnetosphere. This can be applied to other astrophysical systems.

  • PDF

A Study on the Flow Characteristics in the Upstream- and Downstream-Diaphragm Ludwieg Tubes (상류막 방식과 하류막 방식의 Ludwieg Tube에서 발생하는 유동특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.363-366
    • /
    • 2010
  • Among the many different types of wind tunnels, Ludwieg Tube(LT) is the most suitable facility for high Reynolds number testing. Depending on the location of diaphragm, there are two types of LTs. In the present study, a computational work has been carried out to compare the operation characteristics of upstream- and downstream-diaphragm LTs. Two-dimensional, axisymmetric, unsteady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. Based on the present results, the flow mechanism of the starting process was discussed in detail using wave diagrams and characteristics of starting time and working time were investigated.

  • PDF