• Title/Summary/Keyword: Wind turbine

Search Result 2,033, Processing Time 0.032 seconds

Study on the Aerodynamics and Control Characteristics of 5 MW Wind Turbine (5MW급 풍력 터빈의 공력 및 제어 특성에 관한 연구)

  • Tai, Fengzhu;Kang, Ki-Won;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.59-69
    • /
    • 2011
  • 5MW wind turbine is regarded as a promising system for offshore wind farms in the western sea of Korean. And the wind turbine is developed in many companies but not much information is known about it. In this study, aerodynamics and control characteristics depending on several control methods is reviewed on 5MW wind turbine, in which configuration data of the turbine are used from the previous study of NREL. For the calculations, GH_Bladed, which is certificated software by GL, is used and compared with data from FAST code of NREL. This study shows that how much power production, and aerodynamic performances and loads can be obtained with different controls in the operation of 5MW wind turbine, which is expected to be useful in the design of the wind turbine system.

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

Scale model experimental of a prestressed concrete wind turbine tower

  • Ma, Hongwang;Zhang, Dongdong;Ma, Ze;Ma, Qi
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.353-367
    • /
    • 2015
  • As concrete wind-turbine towers are increasingly being used in wind-farm construction, there is a growing need to understand the behavior of concrete wind-turbine towers. In particular, experimental evaluations of concrete wind-turbine towers are necessary to demonstrate the dynamic characteristics and load-carrying capacity of such towers. This paper describes a model test of a prestressed concrete wind-turbine tower that examines the dynamic characteristics and load-carrying performance of the tower. Additionally, a numerical model is presented and used to verify the design approach. The test results indicate that the first natural frequency of the prestressed concrete wind turbine tower is 0.395 Hz which lies between frequencies 1P and 3P (0.25-0.51 Hz). The damper ratio is 3.3%. The maximum concrete compression stresses are less than the concrete design compression strength, the maximum tensile stresses are less than zero and the prestressed strand stresses are less than the design strength under both the serviceability and ultimate limit state loads. The maximum displacement of the tower top are 331 mm and 648 mm for the serviceability limit state and ultimate limit state, respectively, which is less than L/100 = 1000 mm. Compared with traditional tall wind-turbine steel towers, the prestressed concrete tower has better material damping properties, potential lower maintenance cost, and lower construction costs. Thus, the prestressed concrete wind-turbine tower could be an innovative engineering solution for multi-megawatt wind turbine towers, in particular those that are taller than 100 m.

Investigation on Selecting Optimal Wind Turbines in the Capacity Factor Point of View (이용률 관점에서의 최적 풍력발전기 선정에 대한 연구)

  • Woo, Jae-Kyoon;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.60-66
    • /
    • 2011
  • Selecting optimal wind turbine generators for wind farm sites in the capacity factor point of view is performed in this study. A program to determine the best wind turbine generator for the maximum capacity factor for a site was developed. The program uses both the wind characteristics of the site of interest and the power curves of the wind turbines. The program developed was applied to find out optimal wind turbine generators of three different sites in complex terrain and successfully yielded the best site dependent wind turbine generators. It was also used to determine the best wind turbine generator of the wind farm currently operating in Korea and proved its usefulness. The program and methodology developed in this study considered to be very useful at the initial design stage of the wind farm to determine the best wind turbine generators for the site of interest.

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

Comparison of Operating Characteristics for DFIG and FSIG wind Turbine Systems with Respect to Variable Interconnecting Line Conditions (연계선로의 조건 변화에 따른 DFIG와 FSIG 풍력발전시스템의 운전특성 비교)

  • Ro, Kyoung-Soo;Kim, Tae-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.8-15
    • /
    • 2010
  • This paper analyzes the steady-state output characteristics of variable-speed wind turbine systems using doubly-fed induction generators(DFIG) compared with fixed-speed induction generator(FSIG) wind turbine systems. It also presents simulations of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, impedance changes and X/R ratio changes of interconnecting circuits. Simulation results show the variation of generator's active output, terminal voltage and fault currents at the interconnecting point. Case studies demonstrate that DFIG wind turbine systems illustrate better performance to 3-phase fault than FSIG's.