• Title/Summary/Keyword: Wind tunnel experiments

Search Result 226, Processing Time 0.027 seconds

Forced Ignition Characteristics with a Plasma Jet Torch in Supersonic Flow (초음속 유동장 내 플라즈마 토치를 사용한 강제 점화 특성)

  • Kim, Chae-Hyoung;Jeung, In-Secuk;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.363-366
    • /
    • 2011
  • Mixing and combustion experiments with a vent slot mixer were performed in Mach 2 supersonic wind tunnel. Helium and hydrogen gases each were used for the mixing and the combustion experiment with a plasma jet (PJ) torch. The vent slot mixer holds plenty of fuel in the downstream mixing region, even though the fuel is transversely injected. In case of the combustion, the injected fuel is ignited by the PJ torch, and then unburned mixture is burned by shock-induced combustion downstream. Thermal choking in the combustor leads to shock trains in the isolator, causing the unstable combustion.

  • PDF

Internal Flow characteristics of Ramjet Supersonic Intake (램제트 초음속 흡입구 내부 유동 특성)

  • Lee, Hyoung-Jin;Kim, Sei-Hwan;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.331-334
    • /
    • 2011
  • The performance of ramjet engine is closely associated with a supersonic intake. In this study, experiments and computational simulations were conducted to observe the internal flow characteristics of the supersonic intake. The supersonic intake which have self-starting characteristics was designed and manufactured. The flow characteristics was analyzed from the experimental results using the supersonic wind tunnel testing and computational results using RANS equation and Menter's SST turbulence model. The detailed visualization results were suggested for the pseudo-shock wave of stable operations and for the inlet buzz phenomenon of unstable operations.

  • PDF

Performance Comparison of Automotive Air conditioning System by using R134a and R152a (R134a와 R152a 냉매를 이용한 자동차용 에어컨 시스템의 성능 비교)

  • Kim, Jeong-Su;Nam, Su-Byung;Lee, Dae-Woong;Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • This study presented the feasibility of R152a refrigerant as an alternative of R134a which is used in the current automobile air conditioning system. The performance of air conditioning system installed in the actual vehicle was tested using the climate wind tunnel. The experiments were conducted at various refrigerant charge quantities and various driving conditions such as city traffic, highway traffic and parking. Same components and lubricant were used for both R134a and R152a system. The effects of air set values of thermal expansion valve on the performance were also investigated. In case of the R152a system, refrigerant charge quantity can be reduced about 20%, better performance and superior compressor durability is expected due to the lower discharge pressure compared to the R134a system.

  • PDF

Quantitative Analysis of Initial Dispersion Condition Effects on Randomness of Magnus Rotor Bomblet (Magnus Rotor 자탄의 초기 방출조건이 분산도에 미치는 영향에 대한 정량적 분석)

  • Bai, Ikhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.83-89
    • /
    • 2019
  • This research describes quantitative effects of initial dispersion conditions upon the dispersion randomness of Magnus rotor bomblets. Ratios of the missile spin rate to the missile velocity, a, flight path angles, ${\gamma}$ and altitudes, h, were changed to investigate their effects on dispersion randomness. Dispersion was analyzed through calculation of 6 degree of freedom motion equation with aerodynamic coefficients from wind tunnel experiments. In order to analyze the randomness, regression analysis is adopted to calculate the coefficient of determination. The optimized ratio of the missile spin rate to the missile velocity and flight path angle were obtained and the dispersion altitudes had more effect on the dispersion diameter and had less effect on dispersion than other parameters.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

Drag Coefficient Estimation of Pile Type Structures by Numerical Water Basin Experiments (수조 수치실험에 의한 말뚝구조물의 항력계수 산정)

  • Park, Il-Heum;Lee, Geun-Hyo;Cho, Young-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • A possibility of the drag coefficient estimation in numerical water basins was discussed where the numerical solution were calculated by the 3-dimensional hydro-dynamical model (FLOW-$3D^{(R)}$) with the RNG $k-{\varepsilon}$ turbulence model. On the known cases of the drag coefficients for a rectangle, the numerical drag coefficients got $1.34{\sim}1.52$ and the wind tunnel values were $1.3{\sim}1.5$. For a cylinder, the numerical values were calculated as $0.75{\sim}0.78$ in the range of 0.5

Experimental Investigation on the Effect of Low-Speed Icing Condition to the Surface Roughness Formation (저속 결빙조건이 표면 조도 형성에 미치는 영향에 관한 실험적 연구)

  • Kang, Yu-Eop;Min, Seungin;Kim, Taeseong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • In the field of aircraft icing prediction, surface roughness has been considered as critical factor because it enhances convective heat transfer and changes local collection efficiency. For this significance, experimental studies have been conducted to acquire the quantitative data of the formation process. Meanwhile, these experiments was conducted under low-speed condition due to the measurement difficulties. However, it has not been investigated that how the flow characteristic of low-speed will effects to the surface roughness. Therefore, the present study conducted experiment under low-speed icing condition, and analyzed the relation between surface roughness characteristics and icing condition. As an analysis method, the dominant parameters used in the previous high-speed experiments are employed, and roughness characteristics are compared. The size of roughness element was consistent with the previous known tendency, but not the smooth zone width.

Optimal Basis Function Selection for Polynomial Response Surface Model Using Genetic Algorithm (유전 알고리즘을 이용한 다항식 반응면 모델의 최적 기저함수 선정)

  • Kim, Sang-Jin;You, Heung-Cheol;Bae, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Polynomial response surface model has been widely used as approximation model which replace physical or numerical experiments in various engineering fields. Generally, low-order model is used to reduce experimental points required to construct the response surfaces, but this approach has limit to represent the highly non-linear phenomena. In this paper, we developed the method to expand modeling capabilities of polynomial response surfaces by increasing order of polynomial and selecting optimum polynomial basis functions. Genetic algorithm is used to choose optimal polynomial basis functions. Developed method was applied to analytic functions with 1 or 2 variables and wind tunnel test data modeling. The results show that this method is applicable to building response surface models for highly non-linear phenomena.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

Transition Prediction of compressible Axi-symmetric Boundary Layer on Sharp Cone by using Linear Stability Theory (선형 안정성 이론을 이용한 압축성 축 대칭 원뿔 경계층의 천이지점 예측)

  • Park, Dong-Hoon;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.407-419
    • /
    • 2008
  • In this study, the transition Reynolds number of compressible axi-symmetric sharp cone boundary layer is predicted by using a linear stability theory and the -method. The compressible linear stability equation for sharp cone boundary layer was derived from the governing equations on the body-intrinsic axi-symmetric coordinate system. The numerical analysis code for the stability equation was developed based on a second-order accurate finite-difference method. Stability characteristics and amplification rate of two-dimensional second mode disturbance for the sharp cone boundary layer were calculated from the analysis code and the numerical code was validated by comparing the results with experimental data. Transition prediction was performed by application of the -method with N=10. From comparison with wind tunnel experiments and flight tests data, capability of the transition prediction of this study is confirmed for the sharp cone boundary layers which have an edge Mach number between 4 and 8. In addition, effect of wall cooling on the stability of disturbance in the boundary layer and transition position is investigated.