• 제목/요약/키워드: Wind speed error

검색결과 212건 처리시간 0.022초

Interpolation을 이용한 3-CUP Anemometer의 성능 개선에 관한 연구 (The Study of Performance Improvement of the 3-Cup Anemometer using Interpolation Methods)

  • 이성신;정택식;구법모
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.672-675
    • /
    • 2001
  • 본 논문에서 Interpolation Methods를 이용하여 보다 정화한 풍속을 계산하는 방법과 보다 정확한 풍향을 계산하기 위하여 Interpolation Polynomial을 찾는 방법을 제안하였고, 이렇게 제안된 방법을 이용하여 3-Cup Anemometer의 성능을 개선하였다. 우리는 풍향, 풍속의 관측을 위해 기구부는 3-cup Type Anemometer로, 전자부는 Photo Sensor를 이용하여 구현하였다. 정확한 풍속과 풍향의 측정을 위해서는 시스템의 메모리 한계 및 성능을 고려한 시스템 설계와 8비트 Gray Code Film으로 256(= 2$^{8}$ )개의 각도 Data로 360$^{\circ}$를 표현하는 방법이다.

  • PDF

국내풍속보정에 적합한 Deacon 방정식의 기하평균높이 산정방법에 대한 연구 (The study for calculating the geometric average height of Deacon equation suitable to the domestic wind correction methodology.)

  • 정의헌;문채주;정문선;조규판;박귀열
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.9-14
    • /
    • 2010
  • The main cause of global warming is carbon dioxide generated from the use of fossil fuels, and active research on the reduction of carbon is in progress to slow down the increasing global warming. Wind turbines generate electricity from kinetic energy of wind and are considered as representative for an energy source that helps to reduce carbon emission. Since the kinetic energy of wind is proportional to the cube of the wind speed, the intensity of wind affects wind farm construction validity the most. Therefore, to organize a wind farm, validity analysis should be conducted first through measurement of the wind resources. To facilitate the approval and permission and reduce installation cost, measuring sensors should be installed at locations below the actual wind turbine hub. Wind conditions change in shape with air density, and air density is most affected by the variable sterrain and surface type. So the magnitude of wind speed depends on the ground altitude. If wind conditions are measured at a location below the wind turbine hub, the wind speed has to be extrapolated to the hub height. This correction of wind speed according to height is done with the Deacon equation used in the statistical analysis of previously observed data. In this study, the optimal Deacon equation parameter was obtained through the analysis of the correction of the wind speed error with the Deacon equation based on the characteristics of terrain.

비행자료산출을 위한 소요시간과 정답오차범위에 관한 연구 (A Study on the Time Required and Error Tolerance Limits for Flight Data Computation)

  • 김칠영;한경근
    • 한국항공운항학회지
    • /
    • 제6권1호
    • /
    • pp.21-29
    • /
    • 1998
  • The purpose of the present paper is to determine the time required and error tolerance limits for flight data computation. The results of statistical analysis showed that the calculator side computation required about 50 seconds for each question and wind side computation needed about 115 seconds for each question. In case of error tolerance limits, it was found that the error tolerance limit for altitude computation war 90 feet and two knots of interval was recommanded for the speed computation in calculator side, and one degree of interval for heading computation and five knots interval for speed computation in wind side.

  • PDF

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

2MW급 풍력발전기 사이클로이드 피치감속기 설계에 대한 연구 (A study on the design of cycloidal pitch reducer for the 2MW-class wind turbine)

  • 민영실;이형우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.895-902
    • /
    • 2015
  • 본 연구에서는 사이클로이드기어시스템 1단, 한 쌍의 평기어시스템, 입력 축, 출력 축, 하우징으로 구성되어 있는 2MW급 풍력발전기용 사이클로이드 피치감속기에 대해 유한요소해석을 통한 안정성평가를 수행하였다. 또한 평기어에 대해서는 ISO 6336에 의한 기어강도해석을 통하여 안정성 여부를 평가하였다. 2MW급 풍력발전기용 사이클로이드 감속기의 고유진동 특성 해석을 수행하였고, 입력축 질량불평형, 출력축 질량불평형, 평기어 치합전달오차, 사이클로이드기어 치합전달오차 등에 발생하는 가진원에 대해 위험속도 분석을 하였다.

풍력터빈의 LQR 제어 (LQR control of Wind Turbine)

  • 남윤수;조장환;임창희;박성수
    • 풍력에너지저널
    • /
    • 제2권1호
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.

남극 세종기지에서의 풍력자원 국소배치 민감도 분석 (Sensitivity Analysis of Wind Resource Micrositing at the Antarctic King Sejong Station)

  • 김석우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.1-9
    • /
    • 2007
  • Sensitivity analysis of wind resource micrositing has been performed through the application case at the Antarctic King Sejong station with the most representative micrositing softwares: WAsP, WindSim and Meteodyn WT. The wind data obtained from two met-masts separated 625m were applied as a climatology input condition of micro-scale wind mapping. A tower shading effect on the met-mast installed 20m apart from the warehouse has been assessed by the CFD software Fluent and confirmed a negligible influence on wind speed measurement. Theoretically, micro-scale wind maps generated by the two met-data located within the same wind system and strongly correlated meteor-statistically should be identical if nothing influenced on wind prediction but orography. They, however, show discrepancies due to nonlinear effects induced by surrounding complex terrain. From the comparison of sensitivity analysis, Meteodyn WT employing 1-equation turbulence model showed 68% higher RMSE error of wind speed prediction than that of WindSim using the ${\kappa}-{\epsilon}$ turbulence model, while a linear-theoretical model WAsP showed 21% higher error. Consequently, the CFD model WindSim would predict wind field over complex terrain more reliable and less sensitive to climatology input data than other micrositing models. The auto-validation method proposed in this paper and the evaluation result of the micrositing softwares would be anticipated a good reference of wind resource assessments in complex terrain.

지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석 (Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR)

  • 강동범;허종철;고경남
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증 (Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS)

  • 김철희;나진균;박철진;박진호;임차순;윤이;김민섭;박춘화;김용준
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.