• 제목/요약/키워드: Wind pressure coefficients ($C_P$)

검색결과 13건 처리시간 0.022초

Pressure field of a rotating square plate with application to windborne debris

  • Martinez-Vazquez, P.;Kakimpa, B.;Sterling, M.;Baker, C.J.;Quinn, A.D.;Richards, P.J.;Owen, J.S.
    • Wind and Structures
    • /
    • 제15권6호
    • /
    • pp.509-529
    • /
    • 2012
  • Traditionally, a quasi steady response concerning the aerodynamic force and moment coefficients acting on a flat plate while 'flying' through the air has been assumed. Such an assumption has enabled the flight paths of windborne debris to be predicted and an indication of its potential damage to be inferred. In order to investigate this assumption in detail, a series of physical and numerical simulations relating to flat plates subject to autorotation has been undertaken. The physical experiments have been carried out using a novel pressure acquisition technique which provides a description of the pressure distribution on a square plate which was allowed to auto-rotate at different speeds by modifying the velocity of the incoming flow. The current work has for the first time, enabled characteristic pressure signals on the surface of an auto-rotating flat plate to be attributed to vortex shedding.

겨울철 시베리아 고기압과 관련된 영동 해안 강수량과 해기차 및 바람의 상관성에 관한 연구 (The Study of Correlations between Air-Sea Temperature Difference and Precipitation and between Wind and Precipitation in the Yeongdong Coastal Region in Relation to the Siberian High)

  • 송지애;이재규;김유진
    • 대기
    • /
    • 제26권1호
    • /
    • pp.127-140
    • /
    • 2016
  • In this study, the correlations between AST850 and precipitation, and those between WDT and precipitation in the Yeongdong coastal region under the direct/indirect influence of the expansion of cP (continental polar air mass) high were quantitatively analyzed based on the winter season data for the last 20 years, according to surface pressure patterns such as Type 1 (cP high expansion type), Type 2 (cP high expansion + trough type), Type 4 (South trough type), and Type 5 (East Sea trough type). Here, AST850 represents 'sea surface temperature minus temperature on 850 hPa level' and WDT represents 'a speed of 1000 hPa wind projected onto a certain wind direction times precipitation duration in hour'. First, the correlation coefficients between AST850 and precipitation in Type 1, Type 2, and Type 5 cases were 0.253, 0.384, and 0.398 respectively, indicating that a tendency of increasing precipitation linearly with the value of AST850 is slightly presented. In the case of Type 4, however, the coefficient was -0.15, representing almost no linear correlation between AST850 and precipitation. In the correlation between WDT and precipitation, there was the largest correlation coefficient (0.464) between WDT along a direction of $90^{\circ}$ and at EN1 in Type 1 cases. In the case of Type 2, there was the largest correlation coefficient (0.767) between WDT along a direction of $67.5^{\circ}$ and at ES1. In the case of Type 4, there was the largest correlation coefficient (0.559) between WDT along a direction of $22.5^{\circ}$ and at EN2. Finally, in the case of Type 5, there was the largest correlation coefficient (0.945) between WDT along a direction of $315^{\circ}$ and at SE1, representing the largest coefficient among the types. It was found that surface wind directions with the highest correlations to precipitation in the Yeongdong coastal area on winter season were varied according to surface pressure patterns, and that the correlations between WDT and precipitation were higher than those between AST850 and precipitation.

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.